Hilbert transforms and Cotlar-type identities for groups acting on trees

Runlian Xia

University of Glasgow

BMC-BAMC GLASGOW joint work with A. González-Pérez and J. Parcet

7 April 2021

The Hilbert transform

Definition For $f \in C_c^{\infty}(\mathbb{R})$, $(Hf)(x) = \text{p.v.} \int_{\mathbb{R}} f(y) \frac{1}{x - y} dy.$

The Hilbert transform as a Fourier multiplier:

$$\widehat{(Hf)}(\xi) = -i\operatorname{sgn}(\xi) \cdot \widehat{f}(\xi), \quad \xi \in \mathbb{R}.$$

Motivation: Convergence of Fourier series.

Problem
Let
$$f \in L_p(\mathbb{T})$$
 for $1 . Do we have $\sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{2\pi i k \theta} \longrightarrow f(\theta)$ in L_p -norm?$

Motivation: Convergence of Fourier series.

Problem

Let
$$f \in L_p(\mathbb{T})$$
 for $1 . Do we have
$$\lim_{N \to \infty} (T_{\mathbf{1}_{[-N,N]}}f)(\theta) = \lim_{N \to \infty} \sum_{k=-N}^{N} \widehat{f}(k) e^{2\pi i k \theta} \longrightarrow f(\theta) \text{ in } L_p\text{-norm?}$$$

$$L_p$$
-norm convergence $\iff \sup_N \|T_{1_{[-N,N]}} : L_p(\mathbb{T}) \to L_p(\mathbb{T})\| < \infty.$

Symbol	Multiplier
$i \operatorname{sgn}(k)$	Н
$1_{[0,\infty)}(k)$	$\frac{1}{2}(1+iH)$
$1_{[a,\infty)}(k)$	$\frac{1}{2}(1+iM_{e^{-2\pi iax}}HM_{e^{2\pi iax}})$
	Ha
$1_{[a,b]}(k) = 1_{[a,\infty)}(k) \cdot 1_{[-b,\infty)}(-k)$	$H_a \tilde{H}_b$

where $M_{f(x)}g(x) = f(x)g(x)$.

$$\|H: L_{p}(\mathbb{T}) \to L_{p}(\mathbb{T})\| < \infty \Longleftrightarrow \sup_{N} \|T_{\mathbf{1}_{[-N,N]}}: L_{p}(\mathbb{T}) \to L_{p}(\mathbb{T})\| < \infty.$$

The boundedness of Hilbert transform on $\ensuremath{\mathbb{R}}$

Results:

- Unbounded on L_p for $p = 1, \infty$.
- Trivially bounded on L_2 .
- M. Riesz (1924) Bounded for 1 .
- Cotlar (1955) Recursive: $p = 2^k + \text{Marcinkiewicz's Interpolation}$.
- Kolmogorov (1924) Weak L₁.
- Calderón and A. Zygmund (1952).

The boundedness of Hilbert transform on $\ensuremath{\mathbb{R}}$

Results:

- Unbounded on L_p for $p = 1, \infty$.
- Trivially bounded on L₂.
- M. Riesz (1924) Bounded for 1 .
- Cotlar (1955) Recursive: $p = 2^k + \text{Marcinkiewicz's Interpolation}$.
- Kolmogorov (1924) Weak L₁.
- Calderón and A. Zygmund (1952).

Classical Cotlar Identity:

 $(Hf)^2 = f^2 + 2H(f Hf).$

Generalized by Mei and Ricard (2017) for amalgamated free product of von Neumann algebras.

Non-Abelian groups

G: discrete group.

Left regular representation

$$\lambda: \mathrm{G} o \mathcal{U}(\ell_2(\mathrm{G})) ext{ with } \lambda_g \varphi(h) = \varphi(g^{-1}h). \ \mathcal{L}(\mathrm{G}) = \{\lambda_g\}_{g\in\mathrm{G}}^{''}.$$

Non-abelian Fourier transform

For
$$\widehat{f} \in \ell_1(G), f := \sum_G \widehat{f}(g)\lambda_g$$
 is a bounded linear map $\ell_2(G) \rightarrow \ell_2(G)$.

Non-commutative *L_p*-spaces

$$L_p(\widehat{\mathrm{G}}) := L_p(\mathcal{L}(\mathrm{G}), \tau) = ``\{f : \tau(|f|^p)^{rac{1}{p}} < \infty\}"$$
 with $\tau(f) = \widehat{f}(e)$.

Fourier multipliers on $\mathcal{L}(G)$:

$$m \in \ell_{\infty}(\mathrm{G}) \rightsquigarrow T_m f := \sum_{\mathrm{G}} m(g) \widehat{f}(g) \lambda_g.$$

Cotlar identity I

Problem

Does it hold that

$$\|H = T_m : L_p(\widehat{\mathbf{G}}) \to L_p(\widehat{\mathbf{G}})\| < \infty$$
?

Theorem (Mei-Ricard '17, Cotlar '55) Let $H : L_2(\widehat{G}) \to L_2(\widehat{G})$ be self-adjoint and bounded. If $H(x)H(x)^* = H(xH(x)^*) + H(xH(x)^*)^* - H(H(xx^*))^*$, (Cotlar identity) then $||H : L_p(\widehat{G}) \to L_p(\widehat{G})|| \lesssim \left(\frac{p}{p-1}\right)^{\beta}$, $\beta = \log_2(1 + \sqrt{2})$.

Cotlar identity II

Proposition (González Pérez-Parcet-X)

Let $H = T_m$. TFAE:

- Cotlar identity holds for *H*.
- Condition on the symbol:

 $(m(gh) - m(g))(m(g^{-1}) - m(h)) = 0$

(Cotlar condition)

for all $g, h \in G \setminus \{e\}$.

Proof.

 $H(f)H(f)^* - H(fH(f)^*) - H(fH(f)^*)^* + H(H(ff^*))^* = 0$ for $f \in \mathbb{C}[G]$ is equivalent to

Cotlar identity II

Proposition (González Pérez-Parcet-X)

Let $H = T_m$. TFAE:

- Cotlar identity holds for *H*.
- Condition on the symbol:

 $(m(gh) - m(g))(m(g^{-1}) - m(h)) = 0$

(Cotlar condition)

for all $g, h \in G \setminus \{e\}$.

Proof.

 $H(f)H(f)^* - H(fH(f)^*) - H(fH(f)^*)^* + H(H(ff^*))^* = 0$ for $f \in \mathbb{C}[G]$ is equivalent to

$$\sum_{g,h\in G\setminus\{e\}} \left[m(gh)m(h) - m(g)m(h) - m(g^{-1})m(gh) + m(g)m(g^{-1}) \right] \widehat{f}(gh)\overline{\widehat{f}(h)}\lambda_g = 0.$$

Hilbert transforms for groups acting on trees

Let G be a group acting on a tree X without inversion. Choose a vertex P_0 in X and write $X \setminus \{P_0\}$ as the disjoint union of its connected components $X \setminus \{P_0\} = \bigsqcup_i X_i$.

Define a bounded function on X by $\tilde{m}(P_0) = 0$ and $\tilde{m}(X_i) = C_i$, $C_i \neq C_j$ when $i \neq j$. The function \tilde{m} induces a function on G by $m(g) = \tilde{m}(g \cdot P_0)$ for any $g \in G$.

Theorem (González Pérez-Parcet-X)

The function m defined above satisfies the Cotlar condition that for any $g, h \in G$ s.t. $g \cdot P_0 \neq P_0$ and $h \cdot P_0 \neq P_0$,

$$(m(g^{-1}) - m(h))(m(gh) - m(g)) = 0.$$

Example: Free groups

Consider the free group with 2 generators \mathbb{F}_2 acting on it Cayley graph.

$$m = C_1 \mathbb{1}_{\mathcal{W}_a} + C_2 \mathbb{1}_{\mathcal{W}_b} + C_3 \mathbb{1}_{\mathcal{W}_{a^{-1}}} + C_4 \mathbb{1}_{\mathcal{W}_{b^{-1}}}$$

Groups acting on trees

Theorem (Fundamental theorem of Bass-Serre theory)

Let G be a group acting on a tree X without inversion. G can be identified with the fundamental group of a certain graph of groups (G, Y), where $Y = G \setminus X$, i.e.

$$\mathbf{G}=\pi_1(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{P_0}),$$

where P_0 is a vertex of Y.

Let $G = *_A G_i$, $i = 0, 1, \dots, n$. There exists a tree X on which G acts with Y being a series of segments:

$$P_{0 y_1} P_{1 y_2} P_2 P_{n-1y_n} P_n$$

 $\operatorname{Stab}(P_i) = G_i \text{ and } \operatorname{Stab}(y_i) = A.$

Let $G = *_A G_i$, $i = 0, 1, \dots, n$. For any $g \in G$ there is a sequence $\mathbf{i} = (i_1, \dots, i_\ell)$ and a unique reduced word such that

$$g = s_{i_1} \cdots s_{i_\ell} a$$

where s_{i_i} is a left coset representative of G_{i_i} modulo A.

Theorem (González Pérez-Parcet-X)

Let $G = *_A G_i$, $i = 0, 1, \dots, n$. Then the symbol of the Hilbert transform we defined satisfies the following relation

$$m(g) = C_{s_{i_1}}$$

for any $g = s_{i_1} \cdots s_{i_\ell} a \notin G_0$.

Thank you!