On the quantum symmetry of distance-transitive graphs

Simon Schmidt

University of Glasgow

April 6, 2021

Consider a finite, simple graph G with adjacency matrix A_G . The quantum automorphism group Qut(G) is the compact matrix quantum group (C(Qut(G)), u), where

$$C(\operatorname{Qut}(G)) := C^*(u_{ij}, 1 \le i, j \le n | u_{ij} = u_{ij}^* = u_{ij}^2, \sum_k u_{ik} = \sum_k u_{ki} = 1, uA_G = A_G u).$$

Here $uA_G = A_G u$ is nothing but $\sum_k u_{ik}(A_G)_{kj} = \sum_k (A_G)_{ik} u_{kj}$.

Consider a finite, simple graph G with adjacency matrix A_G . The quantum automorphism group Qut(G) is the compact matrix quantum group (C(Qut(G)), u), where

$$C(\operatorname{Qut}(G)) := C^*(u_{ij}, 1 \le i, j \le n | u_{ij} = u_{ij}^* = u_{ij}^2, \sum_k u_{ik} = \sum_k u_{ki} = 1, uA_G = A_G u).$$

Here $uA_G = A_G u$ is nothing but $\sum_k u_{ik}(A_G)_{kj} = \sum_k (A_G)_{ik} u_{kj}$.

Definition (Banica & Bichon, 2007)

We say that G has no quantum symmetry if C(Qut(G)) is commutative, or equivalently C(Qut(G)) = C(Aut(G)). Otherwise, we say that G does have quantum symmetry.

Consider a finite, simple graph G with adjacency matrix A_G . The quantum automorphism group Qut(G) is the compact matrix quantum group (C(Qut(G)), u), where

$$C(\operatorname{Qut}(G)) := C^*(u_{ij}, 1 \le i, j \le n | u_{ij} = u_{ij}^* = u_{ij}^2, \sum_k u_{ik} = \sum_k u_{ki} = 1, uA_G = A_G u).$$

Here $uA_G = A_G u$ is nothing but $\sum_k u_{ik}(A_G)_{kj} = \sum_k (A_G)_{ik} u_{kj}$.

Definition (Banica & Bichon, 2007)

We say that G has no quantum symmetry if C(Qut(G)) is commutative, or equivalently C(Qut(G)) = C(Aut(G)). Otherwise, we say that G does have quantum symmetry.

Question

When does a graph have quantum symmetry?

Definition

Let V be a finite set and let $\sigma: V \to V$, $\tau: V \to V$ be permutations. We say that σ and τ are *disjoint* if $\sigma(i) \neq i$ implies $\tau(i) = i$ and vice versa.

Definition

Let V be a finite set and let $\sigma: V \to V$, $\tau: V \to V$ be permutations. We say that σ and τ are *disjoint* if $\sigma(i) \neq i$ implies $\tau(i) = i$ and vice versa.

Theorem (S., 2020)

Let G be a graph. If the automorphism group Aut(G) contains a pair of non-trivial, disjoint automorphisms, then G does have quantum symmetry.

Definition

Let V be a finite set and let $\sigma: V \to V$, $\tau: V \to V$ be permutations. We say that σ and τ are *disjoint* if $\sigma(i) \neq i$ implies $\tau(i) = i$ and vice versa.

Theorem (S., 2020)

Let G be a graph. If the automorphism group Aut(G) contains a pair of non-trivial, disjoint automorphisms, then G does have quantum symmetry.

Example

Consider the quadrangle C_4 .

Definition

Let V be a finite set and let $\sigma: V \to V$, $\tau: V \to V$ be permutations. We say that σ and τ are *disjoint* if $\sigma(i) \neq i$ implies $\tau(i) = i$ and vice versa.

Theorem (S., 2020)

Let G be a graph. If the automorphism group Aut(G) contains a pair of non-trivial, disjoint automorphisms, then G does have quantum symmetry.

Example

Consider the quadrangle C_4 .

Definition

Let V be a finite set and let $\sigma: V \to V$, $\tau: V \to V$ be permutations. We say that σ and τ are *disjoint* if $\sigma(i) \neq i$ implies $\tau(i) = i$ and vice versa.

Theorem (S., 2020)

Let G be a graph. If the automorphism group Aut(G) contains a pair of non-trivial, disjoint automorphisms, then G does have quantum symmetry.

Example

Consider the quadrangle C_4 .

It has disjoint automorphisms $\sigma = (13)$ and $\tau = (24)$. Thus $Qut(C_4) \neq Aut(C_4)$.

• Strategy: Prove that C(Qut(G)) is commutative by showing that the generators commute

- Strategy: Prove that C(Qut(G)) is commutative by showing that the generators commute
- Recall

$$C(\operatorname{Qut}(G)) = C^*(u_{ij}, 1 \le i, j \le n \mid u_{ij} = u_{ij}^* = u_{ij}^2, \sum_k u_{ik} = \sum_k u_{ki} = 1, uA_G = A_G u).$$

- Strategy: Prove that C(Qut(G)) is commutative by showing that the generators commute
- Recall

$$C(\operatorname{Qut}(G)) = C^*(u_{ij}, 1 \le i, j \le n | u_{ij} = u_{ij}^* = u_{ij}^2, \sum_k u_{ik} = \sum_k u_{ki} = 1, uA_G = A_G u).$$

Definition

The distance d(i,j) of vertices i, j is the length of a shortest path connecting i and j.

• In $C(S_n^+)$, we have $uA_G = A_G u$ if and only if $u_{ij}u_{kl} = 0$ for d(i, k) = 1 and $d(j, l) \neq 1$ or vice versa

- Strategy: Prove that C(Qut(G)) is commutative by showing that the generators commute
- Recall

$$C(\operatorname{Qut}(G)) = C^*(u_{ij}, 1 \le i, j \le n | u_{ij} = u_{ij}^* = u_{ij}^2, \sum_k u_{ik} = \sum_k u_{ki} = 1, uA_G = A_G u).$$

Definition

The distance d(i,j) of vertices i, j is the length of a shortest path connecting i and j.

• In $C(S_n^+)$, we have $uA_G = A_G u$ if and only if $u_{ij}u_{kl} = 0$ for d(i, k) = 1 and $d(j, l) \neq 1$ or vice versa

Lemma

Let G be a graph and let $(u_{ij})_{1 \le i,j \le n}$ be the generators of C(Qut(G)). Then $u_{ij}u_{kl} = 0$ if $d(i,k) \ne d(j,l)$.

- Strategy: Prove that C(Qut(G)) is commutative by showing that the generators commute
- Recall

$$C(\operatorname{Qut}(G)) = C^*(u_{ij}, 1 \le i, j \le n | u_{ij} = u_{ij}^* = u_{ij}^2, \sum_k u_{ik} = \sum_k u_{ki} = 1, uA_G = A_G u).$$

Definition

The distance d(i,j) of vertices i, j is the length of a shortest path connecting i and j.

• In $C(S_n^+)$, we have $uA_G = A_G u$ if and only if $u_{ij}u_{kl} = 0$ for d(i, k) = 1 and $d(j, l) \neq 1$ or vice versa

Lemma

Let G be a graph and let $(u_{ij})_{1 \le i,j \le n}$ be the generators of C(Qut(G)). Then $u_{ij}u_{kl} = 0$ if $d(i,k) \ne d(j,l)$.

Consequence

It remains to show $u_{ij}u_{kl} = u_{kl}u_{ij}$ for d(i, k) = d(j, l).

Let G be a regular graph. We say that G is distance-transitive if for all $(i, k), (j, l) \in V \times V$ with d(i, k) = d(j, l), there is an automorphism $\sigma \in Aut(G)$ with $\sigma(i) = j, \sigma(k) = l$.

Let G be a regular graph. We say that G is distance-transitive if for all $(i, k), (j, l) \in V \times V$ with d(i, k) = d(j, l), there is an automorphism $\sigma \in Aut(G)$ with $\sigma(i) = j, \sigma(k) = l$.

Lemma

Let G be a distance-transitive graph. Fix a pair of vertices $a, b \in V$, d(a, b) = m. If

 $u_{ia}u_{kb} = u_{kb}u_{ia}$ for all $i, k \in V$, d(i, k) = m,

then

 $u_{ij}u_{kl} = u_{kl}u_{ij}$ for all $i, j, k, l \in V$ with d(i, k) = d(j, l) = m.

Let G be a regular graph. We say that G is distance-transitive if for all $(i, k), (j, l) \in V \times V$ with d(i, k) = d(j, l), there is an automorphism $\sigma \in Aut(G)$ with $\sigma(i) = j, \sigma(k) = l$.

Lemma

Let G be a distance-transitive graph. Fix a pair of vertices $a, b \in V$, d(a, b) = m. If

$$u_{ia}u_{kb} = u_{kb}u_{ia}$$
 for all $i, k \in V$, $d(i, k) = m$

then

$$u_{ij}u_{kl} = u_{kl}u_{ij}$$
 for all $i, j, k, l \in V$ with $d(i, k) = d(j, l) = m$.

Consequence

#{cases for showing commutativity of the generators} = diameter of *G*

The intersection array

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

Let G be a distance-transitive graph with diameter d. The *intersection array* of G is a sequence of integers $\{b_0, b_1, \ldots, b_{d-1}; c_1, c_2, \ldots, c_d\}$, such that for any two vertices v, w at distance d(v, w) = i, there are exactly b_i neighbors of w at distance i + 1 to v and exactly c_i neighbors of w at distance i - 1 to v.

•----•

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

Let *G* be a distance-transitive graph with diameter *d*. The *intersection array* of *G* is a sequence of integers $\{b_0, b_1, \ldots, b_{d-1}; c_1, c_2, \ldots, c_d\}$, such that for any two vertices *v*, *w* at distance d(v, w) = i, there are exactly b_i neighbors of *w* at distance i + 1 to *v* and exactly c_i neighbors of *w* at distance i - 1 to *v*.

Lemma

Let G be distance-transitive with intersection array $\{b_0, b_1, \ldots, b_{d-1}; c_1, c_2, \ldots, c_d\}$ and let $(u_{ij})_{1 \le i,j \le n}$ be the generators of C(Qut(G)). Assume $b_1 + 1 = b_0$, $c_2 = 1$, $c_m \ge 2$ for some m > 2 and $u_{ij}u_{kl} = u_{kl}u_{ij}$ for all vertices i, j, k, l with d(i, k) = d(j, l) = m - 1. Then we have $u_{ij}u_{kl} = u_{kl}u_{ij}$ for all i, j, k, l with d(i, k) = d(j, k) = m.

Let $k \geq 2$. The odd graph O_k is a graph, where

- the vertices correspond to (k-1)-subsets of $\{1, \ldots, 2k-1\}$,
- two vertices are connected if and only if the corresponding subsets are disjoint

Let $k \geq 2$. The odd graph O_k is a graph, where

- the vertices correspond to (k-1)-subsets of $\{1, \ldots, 2k-1\}$,
- two vertices are connected if and only if the corresponding subsets are disjoint

The odd graph O_k has the following properties:

- it is distance-transitive
- it has intersection array

$$\{k, k-1, k-1, \dots, l+1, l+1, l; 1, 1, 2, 2, \dots, l, l\}$$
 for $k = 2l - 1$,
 $\{k, k-1, k-1, \dots, l+1, l+1; 1, 1, 2, 2, \dots, l-1, l-1, l\}$ for $k = 2l$.

The odd graph O_k has the following properties:

- it is distance-transitive
- it has intersection array

$$\{k, k-1, k-1, \dots, l+1, l+1, l; 1, 1, 2, 2, \dots, l, l\}$$
 for $k = 2l - 1$,
 $\{k, k-1, k-1, \dots, l+1, l+1; 1, 1, 2, 2, \dots, l-1, l-1, l\}$ for $k = 2l$.

The proof that O_k has no quantum symmetry looks as follows:

- First show $u_{ij}u_{kl} = u_{kl}u_{ij}$ for $d(i, k) = d(j, l) \in \{1, 2\}$
- Since we have $b_1 + 1 = b_0$, $c_2 = 1$ and $c_m \ge 2$ for all m > 2, we use the previous lemma to finish the proof

Theorem (S., 2020)

The following families of distance-transitive graphs do not have quantum symmetry:

- the odd graphs O_k ,
- the Johnson graphs J(n,2), $n \ge 5$,
- the Kneser graphs K(n,2), $n \ge 5$,
- the Hamming graphs H(n, 3),
- ullet all cubic distance-transitive graphs of order \geq 10,
- strongly regular graphs with girth five.

Theorem (S., 2020)

The following families of distance-transitive graphs do not have quantum symmetry:

- the odd graphs O_k ,
- the Johnson graphs J(n,2), $n \ge 5$,
- the Kneser graphs K(n,2), $n \ge 5$,
- the Hamming graphs H(n, 3),
- ullet all cubic distance-transitive graphs of order \geq 10,
- strongly regular graphs with girth five.

Thank you!

Theorem (S., 2020)

The following families of distance-transitive graphs do not have quantum symmetry:

- the odd graphs O_k ,
- the Johnson graphs J(n,2), $n \ge 5$,
- the Kneser graphs K(n,2), $n \ge 5$,
- the Hamming graphs H(n, 3),
- ullet all cubic distance-transitive graphs of order \geq 10,
- strongly regular graphs with girth five.

Thank you!

- S. Schmidt. Quantum automorphisms of folded cube graphs. Ann. Inst. Fourier, Volume 70 (2020) no. 3, pp. 949-970.
- S. Schmidt. On the quantum symmetry of distance-transitive graphs. Adv. Math., 368:107150, 2020.