On the quantum symmetry of distance-transitive graphs

Simon Schmidt

University of Glasgow

April 6, 2021

Quantum automorphism groups of graphs

Consider a finite, simple graph G with adjacency matrix A_{G}. The quantum automorphism group $\operatorname{Qut}(G)$ is the compact matrix quantum group $(C(\operatorname{Qut}(G)), u)$, where

$$
C(\operatorname{Qut}(G)):=C^{*}\left(u_{i j}, 1 \leq i, j \leq n \mid u_{i j}=u_{i j}^{*}=u_{i j}^{2}, \sum_{k} u_{i k}=\sum_{k} u_{k i}=1, u A_{G}=A_{G} u\right) .
$$

Here $u A_{G}=A_{G} u$ is nothing but $\sum_{k} u_{i k}\left(A_{G}\right)_{k j}=\sum_{k}\left(A_{G}\right)_{i k} u_{k j}$.

Quantum automorphism groups of graphs

Consider a finite, simple graph G with adjacency matrix A_{G}. The quantum automorphism group $\operatorname{Qut}(G)$ is the compact matrix quantum group $(C(\operatorname{Qut}(G)), u)$, where

$$
C(\operatorname{Qut}(G)):=C^{*}\left(u_{i j}, 1 \leq i, j \leq n \mid u_{i j}=u_{i j}^{*}=u_{i j}^{2}, \sum_{k} u_{i k}=\sum_{k} u_{k i}=1, u A_{G}=A_{G} u\right)
$$

Here $u A_{G}=A_{G} u$ is nothing but $\sum_{k} u_{i k}\left(A_{G}\right)_{k j}=\sum_{k}\left(A_{G}\right)_{i k} u_{k j}$.

Definition (Banica \& Bichon, 2007)

We say that G has no quantum symmetry if $C(\operatorname{Qut}(G))$ is commutative, or equivalently $C(\operatorname{Qut}(G))=C(\operatorname{Aut}(G))$. Otherwise, we say that G does have quantum symmetry.

Quantum automorphism groups of graphs

Consider a finite, simple graph G with adjacency matrix A_{G}. The quantum automorphism group $\operatorname{Qut}(G)$ is the compact matrix quantum group $(C(\operatorname{Qut}(G)), u)$, where

$$
C(\operatorname{Qut}(G)):=C^{*}\left(u_{i j}, 1 \leq i, j \leq n \mid u_{i j}=u_{i j}^{*}=u_{i j}^{2}, \sum_{k} u_{i k}=\sum_{k} u_{k i}=1, u A_{G}=A_{G} u\right) .
$$

Here $u A_{G}=A_{G} u$ is nothing but $\sum_{k} u_{i k}\left(A_{G}\right)_{k j}=\sum_{k}\left(A_{G}\right)_{i k} u_{k j}$.

Definition (Banica \& Bichon, 2007)

We say that G has no quantum symmetry if $C(\operatorname{Qut}(G))$ is commutative, or equivalently $C(\operatorname{Qut}(G))=C(\operatorname{Aut}(G))$. Otherwise, we say that G does have quantum symmetry.

Question

When does a graph have quantum symmetry?

Criterion for a graph to have quantum symmetry

Definition

Let V be a finite set and let $\sigma: V \rightarrow V, \tau: V \rightarrow V$ be permutations. We say that σ and τ are disjoint if $\sigma(i) \neq i$ implies $\tau(i)=i$ and vice versa.

Criterion for a graph to have quantum symmetry

Definition

Let V be a finite set and let $\sigma: V \rightarrow V, \tau: V \rightarrow V$ be permutations. We say that σ and τ are disjoint if $\sigma(i) \neq i$ implies $\tau(i)=i$ and vice versa.

Theorem (S., 2020)

Let G be a graph. If the automorphism group $\operatorname{Aut}(G)$ contains a pair of non-trivial, disjoint automorphisms, then G does have quantum symmetry.

Criterion for a graph to have quantum symmetry

Definition

Let V be a finite set and let $\sigma: V \rightarrow V, \tau: V \rightarrow V$ be permutations. We say that σ and τ are disjoint if $\sigma(i) \neq i$ implies $\tau(i)=i$ and vice versa.

Theorem (S., 2020)

Let G be a graph. If the automorphism group $\operatorname{Aut}(G)$ contains a pair of non-trivial, disjoint automorphisms, then G does have quantum symmetry.

Example

Consider the quadrangle C_{4}.

Criterion for a graph to have quantum symmetry

Definition

Let V be a finite set and let $\sigma: V \rightarrow V, \tau: V \rightarrow V$ be permutations. We say that σ and τ are disjoint if $\sigma(i) \neq i$ implies $\tau(i)=i$ and vice versa.

Theorem (S., 2020)

Let G be a graph. If the automorphism group $\operatorname{Aut}(G)$ contains a pair of non-trivial, disjoint automorphisms, then G does have quantum symmetry.

Example

Consider the quadrangle C_{4}.

Criterion for a graph to have quantum symmetry

Definition

Let V be a finite set and let $\sigma: V \rightarrow V, \tau: V \rightarrow V$ be permutations. We say that σ and τ are disjoint if $\sigma(i) \neq i$ implies $\tau(i)=i$ and vice versa.

Theorem (S., 2020)

Let G be a graph. If the automorphism group $\operatorname{Aut}(G)$ contains a pair of non-trivial, disjoint automorphisms, then G does have quantum symmetry.

Example

Consider the quadrangle C_{4}.

It has disjoint automorphisms $\sigma=(13)$ and $\tau=(24)$. Thus $\operatorname{Qut}\left(C_{4}\right) \neq \operatorname{Aut}\left(C_{4}\right)$.

Graphs having no quantum symmetry

- Strategy: Prove that $C(\operatorname{Qut}(G))$ is commutative by showing that the generators commute

Graphs having no quantum symmetry

- Strategy: Prove that $C(\operatorname{Qut}(G))$ is commutative by showing that the generators commute
- Recall

$$
C(\operatorname{Qut}(G))=C^{*}\left(u_{i j}, 1 \leq i, j \leq n \mid u_{i j}=u_{i j}^{*}=u_{i j}^{2}, \sum_{k} u_{i k}=\sum_{k} u_{k i}=1, u A_{G}=A_{G} u\right) .
$$

Graphs having no quantum symmetry

- Strategy: Prove that $C(\operatorname{Qut}(G))$ is commutative by showing that the generators commute
- Recall

$$
C(\operatorname{Qut}(G))=C^{*}\left(u_{i j}, 1 \leq i, j \leq n \mid u_{i j}=u_{i j}^{*}=u_{i j}^{2}, \sum_{k} u_{i k}=\sum_{k} u_{k i}=1, u A_{G}=A_{G} u\right) .
$$

Definition

The distance $d(i, j)$ of vertices i, j is the length of a shortest path connecting i and j.

- In $C\left(S_{n}^{+}\right)$, we have $u A_{G}=A_{G} u$ if and only if $u_{i j} u_{k l}=0$ for $d(i, k)=1$ and $d(j, I) \neq 1$ or vice versa

Graphs having no quantum symmetry

- Strategy: Prove that $C(\operatorname{Qut}(G))$ is commutative by showing that the generators commute
- Recall

$$
C(\operatorname{Qut}(G))=C^{*}\left(u_{i j}, 1 \leq i, j \leq n \mid u_{i j}=u_{i j}^{*}=u_{i j}^{2}, \sum_{k} u_{i k}=\sum_{k} u_{k i}=1, u A_{G}=A_{G} u\right) .
$$

Definition

The distance $d(i, j)$ of vertices i, j is the length of a shortest path connecting i and j.

- $\ln C\left(S_{n}^{+}\right)$, we have $u A_{G}=A_{G} u$ if and only if $u_{i j} u_{k l}=0$ for $d(i, k)=1$ and $d(j, I) \neq 1$ or vice versa

Lemma

Let G be a graph and let $\left(u_{i j}\right)_{1 \leq i, j \leq n}$ be the generators of $C(\operatorname{Qut}(G))$. Then $u_{i j} u_{k l}=0$ if $d(i, k) \neq d(j, l)$.

Graphs having no quantum symmetry

- Strategy: Prove that $C(\operatorname{Qut}(G))$ is commutative by showing that the generators commute
- Recall

$$
C(\operatorname{Qut}(G))=C^{*}\left(u_{i j}, 1 \leq i, j \leq n \mid u_{i j}=u_{i j}^{*}=u_{i j}^{2}, \sum_{k} u_{i k}=\sum_{k} u_{k i}=1, u A_{G}=A_{G} u\right)
$$

Definition

The distance $d(i, j)$ of vertices i, j is the length of a shortest path connecting i and j.

- $\ln C\left(S_{n}^{+}\right)$, we have $u A_{G}=A_{G} u$ if and only if $u_{i j} u_{k l}=0$ for $d(i, k)=1$ and $d(j, I) \neq 1$ or vice versa

Lemma

Let G be a graph and let $\left(u_{i j}\right)_{1 \leq i, j \leq n}$ be the generators of $C(\operatorname{Qut}(G))$. Then $u_{i j} u_{k l}=0$ if $d(i, k) \neq d(j, I)$.

Consequence

It remains to show $u_{i j} u_{k l}=u_{k l} u_{i j}$ for $d(i, k)=d(j, I)$.

Distance-transitive graphs

Definition

Let G be a regular graph. We say that G is distance-transitive if for all $(i, k),(j, I) \in V \times V$ with $d(i, k)=d(j, l)$, there is an automorphism $\sigma \in \operatorname{Aut}(G)$ with $\sigma(i)=j, \sigma(k)=I$.

Distance-transitive graphs

Definition

Let G be a regular graph. We say that G is distance-transitive if for all $(i, k),(j, I) \in V \times V$ with $d(i, k)=d(j, l)$, there is an automorphism $\sigma \in \operatorname{Aut}(G)$ with $\sigma(i)=j, \sigma(k)=I$.

Lemma

Let G be a distance-transitive graph. Fix a pair of vertices $a, b \in V, d(a, b)=m$. If

$$
u_{i a} u_{k b}=u_{k b} u_{i a} \quad \text { for all } i, k \in V, d(i, k)=m,
$$

then

$$
u_{i j} u_{k l}=u_{k \mid} u_{j j} \quad \text { for all } i, j, k, l \in V \text { with } d(i, k)=d(j, l)=m .
$$

Distance-transitive graphs

Definition

Let G be a regular graph. We say that G is distance-transitive if for all $(i, k),(j, I) \in V \times V$ with $d(i, k)=d(j, l)$, there is an automorphism $\sigma \in \operatorname{Aut}(G)$ with $\sigma(i)=j, \sigma(k)=I$.

Lemma

Let G be a distance-transitive graph. Fix a pair of vertices $a, b \in V, d(a, b)=m$. If

$$
u_{i a} u_{k b}=u_{k b} u_{i a} \quad \text { for all } i, k \in V, d(i, k)=m,
$$

then

$$
u_{i j} u_{k l}=u_{k \mid} u_{j j} \quad \text { for all } i, j, k, l \in V \text { with } d(i, k)=d(j, l)=m .
$$

Consequence

$\#\{$ cases for showing commutativity of the generators $\}=$ diameter of G

The intersection array

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

The intersection array

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

Definition

Let G be a distance-transitive graph with diameter d. The intersection array of G is a sequence of integers $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, c_{2}, \ldots, c_{d}\right\}$, such that for any two vertices v, w at distance $d(v, w)=i$, there are exactly b_{i} neighbors of w at distance $i+1$ to v and exactly c_{i} neighbors of w at distance $i-1$ to v.

The intersection array

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

Definition

Let G be a distance-transitive graph with diameter d. The intersection array of G is a sequence of integers $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, c_{2}, \ldots, c_{d}\right\}$, such that for any two vertices v, w at distance $d(v, w)=i$, there are exactly b_{i} neighbors of w at distance $i+1$ to v and exactly c_{i} neighbors of w at distance $i-1$ to v.

The intersection array

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

Definition

Let G be a distance-transitive graph with diameter d. The intersection array of G is a sequence of integers $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, c_{2}, \ldots, c_{d}\right\}$, such that for any two vertices v, w at distance $d(v, w)=i$, there are exactly b_{i} neighbors of w at distance $i+1$ to v and exactly c_{i} neighbors of w at distance $i-1$ to v.

$$
i-1
$$

The intersection array

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

Definition

Let G be a distance-transitive graph with diameter d. The intersection array of G is a sequence of integers $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, c_{2}, \ldots, c_{d}\right\}$, such that for any two vertices v, w at distance $d(v, w)=i$, there are exactly b_{i} neighbors of w at distance $i+1$ to v and exactly c_{i} neighbors of w at distance $i-1$ to v.

The intersection array

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

Definition

Let G be a distance-transitive graph with diameter d. The intersection array of G is a sequence of integers $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, c_{2}, \ldots, c_{d}\right\}$, such that for any two vertices v, w at distance $d(v, w)=i$, there are exactly b_{i} neighbors of w at distance $i+1$ to v and exactly c_{i} neighbors of w at distance $i-1$ to v.

The intersection array

- We have seen that it is enough to do one computation for every distance
- What about graphs with huge diameter or a series with increasing diameter?

Definition

Let G be a distance-transitive graph with diameter d. The intersection array of G is a sequence of integers $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, c_{2}, \ldots, c_{d}\right\}$, such that for any two vertices v, w at distance $d(v, w)=i$, there are exactly b_{i} neighbors of w at distance $i+1$ to v and exactly c_{i} neighbors of w at distance $i-1$ to v.

Lemma

Let G be distance-transitive with intersection array $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, c_{2}, \ldots, c_{d}\right\}$ and let $\left(u_{i j}\right)_{1 \leq i, j \leq n}$ be the generators of $C(\operatorname{Qut}(G))$. Assume $b_{1}+1=b_{0}, c_{2}=1, c_{m} \geq 2$ for some $m>2$ and $u_{i j} u_{k l}=u_{k l} u_{i j}$ for all vertices i, j, k, l with $d(i, k)=d(j, I)=m-1$.
Then we have $u_{i j} u_{k l}=u_{k l} u_{i j}$ for all i, j, k, l with $d(i, k)=d(j, k)=m$.

Example: The odd graphs

Example

Let $k \geq 2$. The odd graph O_{k} is a graph, where

- the vertices correspond to ($k-1$)-subsets of $\{1, \ldots, 2 k-1\}$,
- two vertices are connected if and only if the corresponding subsets are disjoint

Example: The odd graphs

Example

Let $k \geq 2$. The odd graph O_{k} is a graph, where

- the vertices correspond to $(k-1)$-subsets of $\{1, \ldots, 2 k-1\}$,
- two vertices are connected if and only if the corresponding subsets are disjoint

Example: The odd graphs

Example

The odd graph O_{k} has the following properties:

- it is distance-transitive
- it has intersection array

$$
\begin{aligned}
& \{k, k-1, k-1, \ldots, I+1, I+1, I ; 1,1,2,2, \ldots, I, I\} \text { for } k=2 I-1, \\
& \{k, k-1, k-1, \ldots, I+1, I+1 ; 1,1,2,2, \ldots, I-1, I-1, I\} \text { for } k=2 I .
\end{aligned}
$$

Example: The odd graphs

Example

The odd graph O_{k} has the following properties:

- it is distance-transitive
- it has intersection array

$$
\begin{aligned}
& \{k, k-1, k-1, \ldots, I+1, I+1, I ; 1,1,2,2, \ldots, I, I\} \text { for } k=2 I-1, \\
& \{k, k-1, k-1, \ldots, I+1, I+1 ; 1,1,2,2, \ldots, I-1, I-1, I\} \text { for } k=2 I .
\end{aligned}
$$

The proof that O_{k} has no quantum symmetry looks as follows:

- First show $u_{i j} u_{k l}=u_{k l} u_{i j}$ for $d(i, k)=d(j, I) \in\{1,2\}$
- Since we have $b_{1}+1=b_{0}, c_{2}=1$ and $c_{m} \geq 2$ for all $m>2$, we use the previous lemma to finish the proof

Distance-transitive graphs having no quantum symmetry

Theorem (S., 2020)

The following families of distance-transitive graphs do not have quantum symmetry:

- the odd graphs O_{k},
- the Johnson graphs $J(n, 2), n \geq 5$,
- the Kneser graphs $K(n, 2), n \geq 5$,
- the Hamming graphs $H(n, 3)$,
- all cubic distance-transitive graphs of order ≥ 10,
- strongly regular graphs with girth five.

Distance-transitive graphs having no quantum symmetry

Theorem (S., 2020)

The following families of distance-transitive graphs do not have quantum symmetry:

- the odd graphs O_{k},
- the Johnson graphs $J(n, 2), n \geq 5$,
- the Kneser graphs $K(n, 2), n \geq 5$,
- the Hamming graphs $H(n, 3)$,
- all cubic distance-transitive graphs of order ≥ 10,
- strongly regular graphs with girth five.

Thank you!

Distance-transitive graphs having no quantum symmetry

Theorem (S., 2020)

The following families of distance-transitive graphs do not have quantum symmetry:

- the odd graphs O_{k},
- the Johnson graphs $J(n, 2), n \geq 5$,
- the Kneser graphs $K(n, 2), n \geq 5$,
- the Hamming graphs $H(n, 3)$,
- all cubic distance-transitive graphs of order ≥ 10,
- strongly regular graphs with girth five.

Thank you!

- S. Schmidt. Quantum automorphisms of folded cube graphs. Ann. Inst. Fourier, Volume 70 (2020) no. 3, pp. 949-970.
- S. Schmidt. On the quantum symmetry of distance-transitive graphs. Adv. Math., 368:107150, 2020.

