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Thinking differently
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Diagram from A p-adic version of AdS/CFT, by S. Gubser, arXiv:1705.00373v1



Automorphisms of graphs help us generate examples of
C*-algebras

Suppose we have a graph I" with a vertex set I'V.
Each vertex v € I'V represents a basis element §,.
A graph automorphism a : I' — T represents a linear map sending dy > d4(y)-

The edges between the vertices restrict the operators that can be represented by
automorphisms.

We'll look at various types of self-similar actions.
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The alphabet X and the tree Tx

Suppose X is a finite set, X¥ is the set of k-tuples in X, with XO = {x}, and define
X := |y X< = {finite words in X}.

T = Tx is an infinite homogeneous rooted tree with
> vertex set T9 = X* = {u € X*}
> edge set Th = {{u, ux}: p € X* and x € X}

> root the empty word, *
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The alphabet X and the tree Tx

Suppose X is a finite set, X¥ is the set of k-tuples in X, with XO = {x}, and define

X* 1= |0 XK = {finite words in X}.
Tyt
T = Tx is an infinite homogeneous rooted tree with
> vertex set T9 = X* = {u € X*} /*\
> edge set Th = {{u, ux}: p € X* and x € X} X y
» root the empty word, * / \ / \
xx Xy - yx yy

7/ \ /N 7N 7N

We label
> edges in Tx with elements of X

> paths and vertices in Tx with elements of X*.
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The alphabet X and the tree Tx

Suppose X is a finite set, X¥ is the set of k-tuples in X, with XO = {x}, and define
X := |y X< = {finite words in X}.

Tixt
T = Tx is an infinite homogeneous rooted tree with
> vertex set T9 = X* = {u € X*} /*\
> edge set Th = {{u, ux}: p € X* and x € X} X y
» root the empty word, * / \ / \
We label o n

> edges in Tx with elements of X
The boundary X¥ of Tx can

> paths and vertices in Tx with elements of X*.
be identified with semi-infinite

AR
"8&/1{;2%5“ words in X starting at *, so
Xw:{X1X2... :X,'EX}.



Automorphisms of T = Tx
From a traditional graph-theoretic perspective, an automorphism « of T consists of a family
of bijections ax: XK — Xk for k > 0 such that for all u,v € X*

{an(p), ()} € T & {pr}eT.
Lemma
Suppose a: T° — TV is a bijection satisfying

a(X¥) =X forall k, and  a(ux) € a(p)X  for all € X< and x € X. (1)

Define ax := a|x«. Then {c} is an automorphism « of T. The inverse is also an
automorphism of T, and also satisfies (1).
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Automorphisms of T = Tx
From a traditional graph-theoretic perspective, an automorphism « of T consists of a family
of bijections ax: XK — Xk for k > 0 such that for all u,v € X*

{on(m), a1} e T & {nr}peT.

Lemma
Suppose a: T° — TV is a bijection satisfying

a(X¥) =X forall k, and  a(ux) € a(p)X  for all € X< and x € X. (1)

Define a := a|x«. Then {c} is an automorphism « of T. The inverse is also an
automorphism of T, and also satisfies (1).

If B = {B} is an automorphism, each {Bk(1), Bks1(px)} € T, hence Brr1(ux) € Br(p)X.
So (1) provides an alternative, ostensibly weaker, characterisation of automorphisms.
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Action of a group on Tx
A group G acts (by automorphisms) on Tx if it preserves adjacency (and hence depth).
Consider actions on X* induced by an action on Tx.

In particular, the action of g € G can not split a path apart, but its action on an edge
labelled x € X may differ depending on the level.
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Action of a group on Tx

A group G acts (by automorphisms) on Tx if it preserves adjacency (and hence depth).

Consider actions on X* induced by an action on Tx.

In particular, the action of g € G can not split a path apart, but its action on an edge

labelled x € X may differ depending on the level.

So, in general, g-(vw) # (g-v)(g-w) forge G, v,we X*.

T{X v}

/\
/\ /\
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Action of a group on Tx
A group G acts (by automorphisms) on Tx if it preserves adjacency (and hence depth).
Consider actions on X* induced by an action on Tx.

In particular, the action of g € G can not split a path apart, but its action on an edge
labelled x € X may differ depending on the level.

So, in general, g-(vw) # (g-v)(g-w) forge G, v,we X*.

Here, g- (yx) = xx# (g- x)(g- y)

T & (Tpn)
* *
/ \ , / \
X\ /Y\ g y=x g x=Yy
2R
%;Durham XX/ Xy yx ¥y o g :{ g-sw =x g (Xy>/yx g () =yy
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Definition of a self-similar action

A self-similar action is a pair (G, X) consisting of a group G and a finite alphabet X with a
faithful action of G on X* satisfying g- * = * and

for all (g,x) € G x X, there exist (h,y) € G x X such that

g-(xw) =y(h-w) forall we X*
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Definition of a self-similar action

A self-similar action is a pair (G, X) consisting of a group G and a finite alphabet X with a
faithful action of G on X* satisfying g * = * and

for all (g,x) € G x X, there exist (h,y) € G x X such that

g-(xw)=y(h-w) forallwe X*

It follows that
for all g€ G,v e X", there exists a unique h € G such that
g - (vw)=(g-v)(h-w) forallwe X*

Call this h € G the restriction of g at v and write h = g,.
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An example - the odometer

Let G=7Z = (a) and X={0,1}.
Define an action of Z on X* recursively by

a-(0w) = 1w
a-(lw) = 0(a-w)

This corresponds to the diadic adding machine;
it coincides with the rule of adding one to a diadic integer
(with place value increasing towards the right).
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Another example - the Basilica group

Let X={0,1} and
G = (a,b: 0"([a,a"]) for all n € N)

where ¢ is the substitution o(b) = a and o(a) = b°.

Define an action of G on X* recursively by
a-(0w)=1(b-w) b-(0w)=0(a-w)
a-(lw) = 0w b- =

The Basilica group is an iterated monodromy group with many interesting properties,
including being amenable.
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The nucleus

A nucleus of a self-similar action (G, X) is a minimal set V' C G satisfying the property

for each g € G, there exists N € N such that
glv € N for all words v € X" with n > N.
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The nucleus

A nucleus of a self-similar action (G, X) is a minimal set V' C G satisfying the property
for each g € G, there exists N € N such that
glv € N for all words v € X" with n > N.

A self-similar action is contracting if it has a finite nucleus.

For a contracting self-similar action (G, X), the nucleus is unique and equal to

N =] N {elv: ve X, |v| > n}

geGn>0
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The bimodule and algebras
Given a self-similar action (G, X), let C*(G) be the full group C*-algebra of G and define

M= Mx =P C(G).
xeX

M can be given the structure of a free right Hilbert C*(G)-module and we can build a
faithful, nondegenerate representation U: G — UL(M).

We can build Cuntz-Pimsner algebras O(G, X) (Nekrashevych) and Toeplitz algebras 7(G, X)
(Laca, R., Raeburn, Whittaker) and we can explicitly calculate KMS states (LRRW).
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The bimodule and algebras
Given a self-similar action (G, X), let C*(G) be the full group C*-algebra of G and define

M= Mx =P C(G).
xeX

M can be given the structure of a free right Hilbert C*(G)-module and we can build a
faithful, nondegenerate representation U: G — UL(M).

We can build Cuntz-Pimsner algebras O(G, X) (Nekrashevych) and Toeplitz algebras 7(G, X)
(Laca, R., Raeburn, Whittaker) and we can explicitly calculate KMS states (LRRW).

If (G, X) is contracting with nucleus {e} then O(G, X) = Oy

AR
@ Durham

University



The bimodule and algebras
Given a self-similar action (G, X), let C*(G) be the full group C*-algebra of G and define

M= Mx =P C(G).

xeX

M can be given the structure of a free right Hilbert C*(G)-module and we can build a
faithful, nondegenerate representation U: G — UL(M).

We can build Cuntz-Pimsner algebras O(G, X) (Nekrashevych) and Toeplitz algebras 7(G, X)
(Laca, R., Raeburn, Whittaker) and we can explicitly calculate KMS states (LRRW).

If (G, X) is contracting with nucleus {e} then O(G, X) = Oy

There's a combinatorial way of calculating the nucleus using the Moore diagram;
AR this can be used to calculate the KMS states.
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Example: basilica group

G = (a, b: ¢"([a,a"]) for all n € N,

where o is the substitution o(b) = a and o(a) = b?, with a self-similar action (G, X) where
X = {0, 1} satisfying

a-(0w)=1(b-w) b-(() w) =0(a-w)
a-(lw) = 0w b-(1w) =1w

(xy Y Y ¥.X)
Proposition 0 K /XQ
( )

The basilica group action (G, X) is

contracting, with nucleus (x, x)
=B N ={eabat btabt bal} ) [ () \ (xy)
W Durham E G
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Example: basilica group

The critical value for KMSg states is . = In | X] = In2.
Proposition

The system (O(G, X), o) has a unique KMSy, 5 state, which is given on the nucleus
N ={ea,bat bt abt ba~'} by

1 forg=e
d(ug) = % forg=b,b!
0 forg=a,al,ab ! bal.
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Path space interpretation

Tyt The tree Ty, 1 represents the
path space of the graph

/ \y y
AN ()
XX Xy oyx yy *

/N VA VA VA

More generally, Tx represents the path space of a bouquet of |X]| loops.
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Path spaces of graph algebras: from trees to forests
The path space of a finite directed graph E is a forest Tg of rooted trees.

: N N
lc:vﬁw 1 2 3 4
P ANVAYEEVAYVAY

AN AN AR AN AR ARARA

Problems arise:
» The trees in the forest are not necessarily homogeneous.
> Restrictions need not be uniquely determined.

» Automorphisms of Tg need not be graph automorphisms of E.
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Path spaces of graph algebras: from trees to forests
The path space of a finite directed graph E is a forest Tg of rooted trees.

E Te
4 \4 w
Y SN, SN,
N A ANV A YA
2 11 12 23 24 31 32 41 42
AN AR AR A AR AR ARG
Problems arise:

» The trees in the forest are not necessarily homogeneous.

» Restrictions need not be uniquely determined.

» Automorphisms of Tg need not be graph automorphisms of E.

AR In particular, in general the source map is not equivariant s(g- e) # g- s(e)
A .
W Durham (eg swapping 31 and 32)
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Small changes make big differences

e VAN
N A AN AN

2 11 12 23 24 31 32 41 42

AN AN AR AN AR ARARA

F TF
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Path spaces of finite directed graphs, E
Generalise: replace X by edges E' in a finite directed graph E.

Suppose E = (E, El, 1, s) is a directed graph with vertex set E°, edge set E!, and range and
source maps r,s: E! — E9. Write

E={p=p1 i i € E' s(pi) = r(piga)}
for the set of paths of length k in E, EV for the set of vertices, and define E* := |_|kZO EX.

We recover the previous work by taking E to be the graph ({x}, X, r,s) in which
r(x) = rly) = s(x) = s(y) = * for all x,y € X= E' and E* = X*.
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Path space T¢ of finite directed graph E

The analogue of the tree Ty is the (undirected) graph Tg with vertex set T = E* and edge
set

= {{p.pe}: p€ E',ec E', and s(u) = r(e)} .

The subgraph vE* = {u € E*: r() = v} is a rooted tree with root v € EY, and
Te = | cpo VE" is a disjoint union of trees, or forest.

: N N
lcvﬁw ' .
N~ VANVANRVANAN
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Partial isomorphisms
Restrictions become problematic in this context; knowing an action on one tree in the forest
doesn't constrain the action on other trees.

Suppose E = (E°, E', r,s) is a directed graph.

A partial isomorphism of Tg consists of two vertices v, w € E” and a bijection g : vE* — wE*

such that
gl e is a bijection onto wEX for k € N, and

g(ue) € g(p)E for all pe € vE*.

For v € E°, we write id, : vE* — vE* for the partial isomorphism given by id,(u) = u for all
w e vE.

Denote the set of all partial isomorphisms of Tg by Plso(E").

Define domain and codomain maps d, c: Plso(E*) — E° so that g: d(g)E* — c(g)E*.
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Groupoids

A groupoid consists of

» a set G of morphisms,

v

a set GY C G of objects (the unit space of the groupoid),

v

two functions ¢,d: G — G, and

v

a partially defined product (g, h) — gh from
G :={(gh) :dg)=c(h)}to G

such that (G, G°, ¢, d) is a category and such that each g € G has an inverse g .

We write G to denote the groupoid. If |G°| = 1, then G is a group.
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(Plso(E*), E°, ¢, d) is a groupoid

Proposition
Suppose that E = (E°, E', r,s) is a directed graph with associated forest TE.

Then (Plso(E*), EY, ¢, d) is a groupoid in which:
» the product is given by composition of functions,
> the identity isomorphism at v € EV isid, : vE* — vE*, and
> the inverse of g € PIso(E*) is the inverse of the function g : d(g)E* — c(g)E*.
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Groupoid action

Suppose that E is a directed graph and G is a groupoid with unit space E°.

An action of G on the path space E* is a (unit-preserving) groupoid homomorphism
¢ : G— Plso(E¥).

The action is faithful if ¢ is one-to-one.

If the homomorphism is fixed, we usually write g - pu for ¢g().

This applies in particular when G arises as a subgroupoid of Plso(E¥).
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Self-similar groupoid action (G, E)
Definition
Suppose E = (EY, E', r,s) is a directed graph and G is a groupoid with unit space E which
acts faithfully on Tg.
The action is self-similar if for every g € G and e € d(g)E', there exists h € G such that

g-(en)=(g-€e)(h-p) forall ue s(eE. (2)

Since the action is faithful, there is then exactly one such h € G, and we write gle := h. Say
(G, E) is a self-similar groupoid action.

F TF

v w
ey / \\ ‘
ﬁ o - e o
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Consequences of self-similar groupoid definition
Lemma
Suppose E= (E°, E', r,s) is a directed graph and G is a groupoid with unit space E° acting
self-similarly on Tg.

Then for g, h € G with d(h) = c(g) and e € d(g)E", we have
d(gle) = s(e) and c(gle) = s(g- e),

ng-e)=g-rle) and s(g-e)=gle-s(e),

if g=id,), then gle = idy), and

(hg)le = (hlge)(gle)-

v

v

v

v
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Consequences of self-similar groupoid definition
Lemma
Suppose E= (E°, E', r,s) is a directed graph and G is a groupoid with unit space E° acting
self-similarly on Tg.

Then for g, h € G with d(h) = c(g) and e € d(g)E", we have
d(gle) = s(e) and c(gle) = s(g- e),

Hg-e)=g-rle) and s(g-e)=glesle),

if g=id,), then gle = idy), and

(hg)le = (hlge)(gle)-

Note that in general s(g- e) # g- s(e), ie the source map is not G-equivariant.
Indeed, g- s(e) will often not make sense: g maps d(g)E* onto c(g)E*, and s(e) is not in
d(g)E* unless s(e) = d(g).

v

v

v

v
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Constructing self-similar groupoid actions
We use automata to construct self-similar groupoid actions.

An automaton over E= (E°, E!, rg, sg) is
» a finite set A containing E°, with
» functions ra,sa: A — E° such that ra(v) = v=sa(v) if v E° C A, and

» a function . )
ASAX,EE — E s ,AA
(a,6) = (a-eale)

such that:

(A1) for every a€ A, e+ a- eis a bijection sa(a)E! — ra(a)E';
(A2) sa(ale) = se(e) for all (a,e) € A, %, E';

A3

SATIE

) re(e) - e= e and re(e)|e = se(e) for all e € EL.

AR We extend restriction to paths by defining
"Durham a|,u = ("'((a|,u1)’u2)’l£3"')’uk'
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Constructing self-similar groupoid actions from directed graphs

We use automata over E to construct subgroupoids of Plso(E*).
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Constructing self-similar groupoid actions from directed graphs

We use automata over E to construct subgroupoids of Plso(E*).

Suppose we have an automaton A over a directed graph E.

For each a € A, we construct a partial isomorphism f, of s(a)E* onto r(a)E* so that
d(f;) = s(a) and c(f;) = r(a).

AR
@ Durham

University



Constructing self-similar groupoid actions from directed graphs

We use automata over E to construct subgroupoids of Plso(E*).

Suppose we have an automaton A over a directed graph E.

For each a € A, we construct a partial isomorphism f, of s(a)E* onto r(a)E* so that
d(f;) = s(a) and c(f;) = r(a).

Theorem
Let Ga be the subgroupoid of Plso(E*) generated by {f;: a € A}.
Then Gu acts faithfully on the path space E*, and this action is self-similar.
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Constructing self-similar groupoid actions from directed graphs

We use automata over E to construct subgroupoids of Plso(E*).

Suppose we have an automaton A over a directed graph E.
For each a € A, we construct a partial isomorphism f, of s(a)E* onto r(a)E* so that
d(f;) = s(a) and c(f;) = r(a).

Theorem
Let Ga be the subgroupoid of Plso(E*) generated by {f;: a € A}.
Then Gu acts faithfully on the path space E*, and this action is self-similar.

The action of Gp is faithful because Ga is constructed as a subgroupoid of Plso(E*).
It is possible to construct unfaithful actions from some automata.
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What about k-graphs?

Inspired by the work of Robertson and Steger on A-buildings,
Kumjian and Pask defined a k-graph (A, d) to be

> a countable small category A with range and source maps r, s, and A° = Obj(A),
together with

> a degree functor d: A — N¥ satisfying the factorisation property that:
for every A € A and m, n € N with d(\) = m 4 n there are unique elements p,v € A
such that A = pv with d(g = m and d(v) = n.
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What about k-graphs?

Inspired by the work of Robertson and Steger on A-buildings,
Kumjian and Pask defined a k-graph (A, d) to be

> a countable small category A with range and source maps r, s, and A° = Obj(A),
together with
> a degree functor d: A — N¥ satisfying the factorisation property that:
for every A € A and m, n € N with d(\) = m 4 n there are unique elements p,v € A
such that A = pv with d(g = m and d(v) = n.
(Afsar, Brownlowe, R, Whittaker) A partial isomorphism of A consists of vertices v, w € A°
and a bijection g: vA — wA satisfying
» for all p € Nk, the restriction &glvar is a bijection of vAP onto wAP; and
> g(Xe) € g(A)A for all A € vA and edges e € s(A)A.
We write PIso(A) for the set of all partial isomorphisms of A; it's a groupoid, units A°.
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Self-similar actions of on k-graphs
0

Let A be a k-graph and let G be a groupoid with unit space G(©) = A?,
An action of G on A is a groupoid homomorphism ¢ : G — Plso(A).
Identifying id, with v for v € A°, we see that ¢ is unit preserving.

We say ¢ is faithful if it is injective.

When it is not ambiguous to do so, we write g - u for @g(p).
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Self-similar actions of on k-graphs
0

Let A be a k-graph and let G be a groupoid with unit space G(©) = A?,
An action of G on A is a groupoid homomorphism ¢ : G — Plso(A).
Identifying id, with v for v € A°, we see that ¢ is unit preserving.

We say ¢ is faithful if it is injective.

When it is not ambiguous to do so, we write g - u for @g(p).

A self-similar groupoid action (G, A) consists of a k-graph A, a groupoid G with unit space
A® and a faithful action of G on A such that for every g € G and edge e € dom(g)A, there
exists h € G satisfying

g-(eN)=1(g-e)(h-A) for all X € s(e)A. (3)

Since the action is faithful, there is a unique h satisfying (3), and we write gle := h.
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The right framework: coloured graphs, pretty pictures
The right framework in which to develop the k-graph theory appears to be coloured graphs.
We define automata associated to coloured graphs, and the relations correspond to
multi-dimensional commuting diagrams. So A\ :=ef~ fed = (a-e)(ale-f) ~ (a-f)(a|s - €)
corresponds to

€
r £
A// e A//
e (ale)lr= (alr)le
a Ale
2 y
alp.e
AR a.f-
W Durham o Alef

University a.e



What does and doesn’t work for k-graphs

We can again construct Toeplitz algebras and calculate KMS states explicitly.
Constraints imposed by product systems limit actions. For example, you can't swap colours
G-periodicity and tracial states on C*(G) continue to play a crucial role in calculations.

For k-graphs, G-periodicity appears through the shift map ¢ and

_J . p.ge N and there exists g € G such that
Per(G,A) := {p 9 oP(x) = 09(g- x) for all x e dom(g)A>
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Questions?

Thank you for your attention.
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Questions?

Thank you for your attention.
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States on the Cuntz-Pimsner algebra O(G, X)

Lemma
Let (G, X) be a self-similar action.
If ¢ is a KMSg state on O(G, X), then = In|X|.

Lemma
Let (G, X) be a contracting self-similar action with nucleus N'.
For each g € N\ {e}, let

Fe={neX": g p=ypandgl, = e}

The sequence {|X|~"|Fg|} is increasing and converges to a limit cg satisfying 0 < ¢z < 1 and
there is a unique KMSy, x| state ¢ for O(G, X) satisfying

P(ug) = cg.



States on the Toeplitz algebra 7(G, X)

Theorem
Let (G, X) be a self-similar action, M = @ C*'(G) and o: R — Aut T (G, X) satisfy
xeX

or(syugst,) = etM=1M)s s for v,we X* and g € G.
1. For B <In|X]
2. For B =1In|X

, there are no KMSg states.

, every KMSy, x| state satisfies ¢in |x|(Ugtin) = ¢in|x(unug) for all g, h € G,

ef(ln‘x|)“"¢|n|x‘(ug) ifv=w

0 otherwise,

®In 1X| (Svugsjv) = {

and factors through O(G, X).

3. For B > In|X|, the simplex of KMSg-states of T (M) is homeomorphic to the simplex of
normalized traces on C*(G) via an explicit construction T — 13 ;.



States on the Toeplitz algebra: 3 ..

Suppose that (G, X) is a self-similar action and g > In|X].
Suppose Te is the trace on Cx (G) satisfying

Te(0g) = {1 Te= <.e

0 otherwise.
For g€ Gand k> 0, we set
Fg::{ueXk:g-u:uand glv=e}.
Then there is a KMSg state g, on (T(G, X), o) such that
e PM(1 — |Xle Ze_ﬁk] ifv=w

Vg, (Svligsy,) =
0 otherwise.



States on the Toeplitz algebra: 15 -,

Suppose that (G, X) is a self-similar action and 5 > In|X|.

Suppose 11 : C*(G) — C is the integrated form of the trivial representation sending g+~ 1 for
all ge G.

For g€ Gand k> 0, we set

Gr={peX:g p=np}
Then there is a KMSg state 15 -, on (T(G, X), o) such that
e M1~ |Xle®)> e K|Gl ifv=w

Vp,r (Sullgsy,) = k=0

0 otherwise.



Computing Fg and Gg: the Moore diagram

Suppose (G, X) is a self-similar action.

A Moore diagram is a directed graph whose vertices are elements of G and edges are labelled
by pairs of elements of X.

In a Moore diagram the arrow

(%)

means that g- x =y and g|x = h.
We can draw a Moore diagram for any subset S of G that is closed under restriction.

The Moore diagram of the nucleus helps us calculate Fg and Gg; we look for labels of the
form (x, x), called stationary paths.



Computing the nucleus

Proposition

Suppose (G, X) is a self-similar action and S is a subset of G that is closed under restriction.
Every vertex in the Moore diagram of S that can be reached from a cycle belongs to the
nucleus.

For the basilica group, the minimal Moore diagram we need to consider is

(xyOKy) ”/Q(yx
P Cad S
(x,%) (

WX X.

v,¥)

W)/ () \(xy)

XN
ab—! ba~1
SN—x

(%)



KMS states on T (G, E)

Proposition
Let E be a finite graph with no sources and vertex matrix B, and let p(B) be the spectral
radius of B.

Suppose that (G, E) is a self-similar groupoid action.

Let o : R — AutT(G,E), oe(suugss) = etlrl=Ds sk,
> For 3 < Inp(B), there are no KMSg-states for o.
> For B >1Inp(B), a state ¢ is a KMSg-state for o if and only if ¢ o ic+(g) is a trace on
C(G) and
D(SuUgS)) = 0puOs() c(e)Os().die) € M )

forge S and u,v € E*.



KMS states on T (G, \)

Theorem

Let A be a finite k-graph with no sources, and (G, A) a self-similar groupoid action. For
1 < i<k, let B; be the matrix with entries Bi(v,w) = |vA®w| and let p(B;) be the spectral
radius of B;. Take r € (0,00)k and let o : R — AutT(G, A) be the dynamics

oe(trugty) = N =D gy g,

Suppose that Sri > Inp(B;) for all 1 < i< k.

> If 7 is tracial state on C*(G), then the series > kD zcnr efﬁ”’T(is()\)) converges to a
positive number Z(3,7), and there is a KMSg-state ¢, of (T(G,A), o) such that

¢ (t)\Ug N) == 5)\u 57 Z e—,BfP Z T(ig|u)'
p>d(A {ves(\)AP—dN): gy=v}

» The map T — ¢, is an affine isomorphism of the simplex of tracial states of C*(G) onto
the simplex of KMSg-states of (T(G,A), o).
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