

An algebraist in Operator Algebras

A self-similar perspective

Jacqui Ramagge

BMC 2021

Self-similar actions of groups

Jumping to graph algebras and path spaces

Self-similar actions of groupoids on graph algebras

Self-similar actions of groupoids on k-graphs

Thinking differently

Diagram from A p-adic version of AdS/CFT, by S. Gubser, arXiv:1705.00373v1

Automorphisms of graphs help us generate examples of C^* -algebras

Suppose we have a graph Γ with a vertex set Γ^0 .

Each vertex $v \in \Gamma^0$ represents a basis element δ_v .

A graph automorphism $\alpha: \Gamma \to \Gamma$ represents a linear map sending $\delta_{\mathbf{v}} \mapsto \delta_{\alpha(\mathbf{v})}$.

The edges between the vertices restrict the operators that can be represented by automorphisms.

We'll look at various types of self-similar actions.

The alphabet X and the tree T_X

Suppose X is a finite set, X^k is the set of k-tuples in X, with $X^0 = \{*\}$, and define $X^* := \bigsqcup_{k>0} X^k = \{$ finite words in $X\}.$

 $T = T_X$ is an infinite homogeneous rooted tree with

▶ vertex set
$$T^0_X = X^* = \{\mu \in X^*\}$$

▶ edge set
$$T_X^1 = \{\{\mu, \mu x\} \colon \mu \in X^* \text{ and } x \in X\}$$

▶ root the empty word, *

The alphabet X and the tree T_X

Suppose X is a finite set, X^k is the set of k-tuples in X, with $X^0 = \{*\}$, and define $X^* := \bigsqcup_{k>0} X^k = \{$ finite words in $X\}.$

 $T = T_X$ is an infinite homogeneous rooted tree with

▶ vertex set
$$T^0_X = X^* = \{\mu \in X^*\}$$

▶ edge set
$$\mathcal{T}^1_X = \{\{\mu, \mu x\} \colon \mu \in X^* \text{ and } x \in X\}$$

▶ root the empty word, *

We label

- edges in T_X with elements of X
- **•** paths and vertices in T_X with elements of X^* .

 $T_{\{x,y\}}$

The alphabet X and the tree T_X

Suppose X is a finite set, X^k is the set of k-tuples in X, with $X^0 = \{*\}$, and define $X^* := \bigsqcup_{k>0} X^k = \{$ finite words in $X\}.$

 $T = T_X$ is an infinite homogeneous rooted tree with

▶ vertex set
$$T^0_X = X^* = \{\mu \in X^*\}$$

▶ edge set
$$\mathcal{T}^1_X = \{\{\mu, \mu x\} \colon \mu \in X^* \text{ and } x \in X\}$$

▶ root the empty word, *

We label

- edges in T_X with elements of X
- ▶ paths and vertices in T_X with elements of X^* .

 $T_{\{x,y\}}$

The boundary X^{ω} of T_X can be identified with semi-infinite words in X starting at *, so $X^{\omega} = \{x_1 x_2 \dots : x_i \in X\}.$

Automorphisms of $T = T_X$

From a traditional graph-theoretic perspective, an automorphism α of T consists of a family of bijections $\alpha_k \colon X^k \to X^k$ for $k \ge 0$ such that for all $\mu, \nu \in X^*$

$$\{\alpha_k(\mu), \alpha_{k+1}(\nu)\} \in T^1 \quad \Leftrightarrow \quad \{\mu, \nu\} \in T^1.$$

Lemma

Suppose $\alpha \colon T^0 \to T^0$ is a bijection satisfying

$$\alpha(X^k) = X^k \quad \text{for all } k, \text{ and } \quad \alpha(\mu x) \in \alpha(\mu)X \quad \text{for all } \mu \in X^k \text{ and } x \in X.$$

Define $\alpha_k := \alpha|_{X^k}$. Then $\{\alpha_k\}$ is an automorphism α of T. The inverse is also an automorphism of T, and also satisfies (1).

Automorphisms of $T = T_X$

From a traditional graph-theoretic perspective, an automorphism α of T consists of a family of bijections $\alpha_k \colon X^k \to X^k$ for $k \ge 0$ such that for all $\mu, \nu \in X^*$

$$\{\alpha_k(\mu), \alpha_{k+1}(\nu)\} \in T^1 \quad \Leftrightarrow \quad \{\mu, \nu\} \in T^1.$$

Lemma

Suppose $\alpha \colon T^0 \to T^0$ is a bijection satisfying

$$\alpha(X^k) = X^k \quad \text{for all } k, \text{ and } \quad \alpha(\mu x) \in \alpha(\mu)X \quad \text{for all } \mu \in X^k \text{ and } x \in X.$$
 (1)

Define $\alpha_k := \alpha|_{X^k}$. Then $\{\alpha_k\}$ is an automorphism α of T. The inverse is also an automorphism of T, and also satisfies (1).

If $\beta = \{\beta_k\}$ is an automorphism, each $\{\beta_k(\mu), \beta_{k+1}(\mu x)\} \in T^1$, hence $\beta_{k+1}(\mu x) \in \beta_k(\mu)X$. So (1) provides an alternative, ostensibly weaker, characterisation of automorphisms.

Action of a group on T_X

A group G acts (by automorphisms) on T_X if it preserves adjacency (and hence depth). Consider actions on X^* induced by an action on T_X .

In particular, the action of $g \in G$ can not split a path apart, but its action on an edge labelled $x \in X$ may differ depending on the level.

Action of a group on T_X

A group G acts (by automorphisms) on T_X if it preserves adjacency (and hence depth). Consider actions on X^* induced by an action on T_X .

In particular, the action of $g \in G$ can not split a path apart, but its action on an edge labelled $x \in X$ may differ depending on the level.

So, in general, $g \cdot (vw) \neq (g \cdot v)(g \cdot w)$ for $g \in G$, $v, w \in X^*$.

Action of a group on T_X

A group G acts (by automorphisms) on T_X if it preserves adjacency (and hence depth). Consider actions on X^* induced by an action on T_X .

In particular, the action of $g \in G$ can not split a path apart, but its action on an edge labelled $x \in X$ may differ depending on the level.

So, in general, $g \cdot (vw) \neq (g \cdot v)(g \cdot w)$ for $g \in G$, $v, w \in X^*$.

Definition of a self-similar action

A self-similar action is a pair (G, X) consisting of a group G and a finite alphabet X with a faithful action of G on X^* satisfying $g \cdot * = *$ and

for all $(g, x) \in G \times X$, there exist $(h, y) \in G \times X$ such that

 $g \cdot (xw) = y(h \cdot w)$ for all $w \in X^*$

Definition of a self-similar action

A self-similar action is a pair (G, X) consisting of a group G and a finite alphabet X with a faithful action of G on X^{*} satisfying $g \cdot * = *$ and

for all $(g, x) \in G \times X$, there exist $(h, y) \in G \times X$ such that

$$g \cdot (xw) = y(h \cdot w)$$
 for all $w \in X^*$

It follows that

for all $g \in G$, $v \in X^*$, there exists a unique $h \in G$ such that

$$g \cdot (vw) = (g \cdot v)(h \cdot w)$$
 for all $w \in X^*$

Call this $h \in G$ the restriction of g at v and write $h = g|_{v}$.

An example - the odometer

Let $G = \mathbb{Z} = \langle a \rangle$ and $X = \{0, 1\}$.

Define an action of $\mathbb Z$ on X^* recursively by

$$\begin{array}{rcl} \mathbf{a} \cdot (0\mathbf{w}) &=& 1\mathbf{w} \\ \mathbf{a} \cdot (1\mathbf{w}) &=& 0(\mathbf{a} \cdot \mathbf{w}) \end{array} \end{array}$$

This corresponds to the diadic adding machine; it coincides with the rule of adding one to a diadic integer (with place value increasing towards the right).

Another example - the Basilica group Let $X = \{0, 1\}$ and

 $G = \langle a, b \colon \sigma^n([a, a^b]) \text{ for all } n \in \mathbb{N} \rangle$

where σ is the substitution $\sigma(b) = a$ and $\sigma(a) = b^2$.

Define an action of G on X^* recursively by

$$\begin{aligned} \mathbf{a} \cdot (0\mathbf{w}) &= 1(\mathbf{b} \cdot \mathbf{w}) & \mathbf{b} \cdot (0\mathbf{w}) &= 0(\mathbf{a} \cdot \mathbf{w}) \\ \mathbf{a} \cdot (1\mathbf{w}) &= 0\mathbf{w} & \mathbf{b} \cdot (1\mathbf{w}) &= 1\mathbf{w} \end{aligned}$$

The Basilica group is an iterated monodromy group with many interesting properties, including being amenable.

The nucleus

A nucleus of a self-similar action (G, X) is a minimal set $\mathcal{N} \subseteq G$ satisfying the property for each $g \in G$, there exists $N \in \mathbb{N}$ such that $g|_{v} \in \mathcal{N}$ for all words $v \in X^{n}$ with $n \geq N$.

The nucleus

A nucleus of a self-similar action (G, X) is a minimal set $\mathcal{N} \subseteq G$ satisfying the property for each $g \in G$, there exists $N \in \mathbb{N}$ such that $g|_{v} \in \mathcal{N}$ for all words $v \in X^{n}$ with $n \geq N$.

A self-similar action is contracting if it has a finite nucleus.

For a contracting self-similar action (G, X), the nucleus is unique and equal to

$$\mathcal{N} = \bigcup_{g \in G} \bigcap_{n \ge 0} \{ g |_{\mathbf{v}} \colon \mathbf{v} \in X^*, |\mathbf{v}| \ge n \}$$

The bimodule and algebras

Given a self-similar action (G, X), let $C^*(G)$ be the full group C^* -algebra of G and define

$$M = M_{(G,X)} = \bigoplus_{x \in X} C^*(G).$$

M can be given the structure of a free right Hilbert $C^*(G)$ -module and we can build a faithful, nondegenerate representation $U: G \to UL(M)$.

We can build Cuntz-Pimsner algebras $\mathcal{O}(G, X)$ (Nekrashevych) and Toeplitz algebras $\mathcal{T}(G, X)$ (Laca, R., Raeburn, Whittaker) and we can explicitly calculate KMS states (LRRW).

The bimodule and algebras

Given a self-similar action (G, X), let $C^*(G)$ be the full group C^* -algebra of G and define

$$M = M_{(G,X)} = \bigoplus_{x \in X} C^*(G).$$

M can be given the structure of a free right Hilbert $C^*(G)$ -module and we can build a faithful, nondegenerate representation $U: G \to UL(M)$.

We can build Cuntz-Pimsner algebras $\mathcal{O}(G, X)$ (Nekrashevych) and Toeplitz algebras $\mathcal{T}(G, X)$ (Laca, R., Raeburn, Whittaker) and we can explicitly calculate KMS states (LRRW).

If (G, X) is contracting with nucleus $\{e\}$ then $\mathcal{O}(G, X) = \mathcal{O}_{|X|}$.

The bimodule and algebras

University

Given a self-similar action (G, X), let $C^*(G)$ be the full group C^* -algebra of G and define

$$M = M_{(G,X)} = \bigoplus_{x \in X} C^*(G).$$

M can be given the structure of a free right Hilbert $C^*(G)$ -module and we can build a faithful, nondegenerate representation $U: G \to UL(M)$.

We can build Cuntz-Pimsner algebras $\mathcal{O}(G, X)$ (Nekrashevych) and Toeplitz algebras $\mathcal{T}(G, X)$ (Laca, R., Raeburn, Whittaker) and we can explicitly calculate KMS states (LRRW).

If (G, X) is contracting with nucleus $\{e\}$ then $\mathcal{O}(G, X) = \mathcal{O}_{|X|}$.

There's a combinatorial way of calculating the nucleus using the *Moore diagram*; this can be used to calculate the KMS states.

Example: basilica group

$$G = \langle a, b \colon \sigma^n([a, a^b]) \text{ for all } n \in \mathbb{N} \rangle,$$

where σ is the substitution $\sigma(b) = a$ and $\sigma(a) = b^2$, with a self-similar action (G, X) where $X = \{0, 1\}$ satisfying

$$\begin{aligned} \mathbf{a} \cdot (0\mathbf{w}) &= 1(\mathbf{b} \cdot \mathbf{w}) & \mathbf{b} \cdot (0\mathbf{w}) &= 0(\mathbf{a} \cdot \mathbf{w}) \\ \mathbf{a} \cdot (1\mathbf{w}) &= 0\mathbf{w} & \mathbf{b} \cdot (1\mathbf{w}) &= 1\mathbf{w} \end{aligned}$$

Proposition

The basilica group action (G, X) is contracting, with nucleus

$$\mathcal{N} = \{e, a, b, a^{-1}, b^{-1}, ab^{-1}, ba^{-1}\}.$$
University

Example: basilica group

The critical value for KMS_{β} states is $\beta_c = \ln |X| = \ln 2$.

Proposition

The system ($\mathcal{O}(G, X), \sigma$) has a unique KMS_{ln 2} state, which is given on the nucleus $\mathcal{N} = \{e, a, b, a^{-1}, b^{-1}, ab^{-1}, ba^{-1}\}$ by

$$\phi(u_g) = \begin{cases} 1 & \text{for } g = e \\ \frac{1}{2} & \text{for } g = b, b^{-1} \\ 0 & \text{for } g = a, a^{-1}, ab^{-1}, ba^{-1}. \end{cases}$$

Path space interpretation

The tree $T_{\{x,y\}}$ represents the path space of the graph

More generally, T_X represents the path space of a bouquet of |X| loops.

Path spaces of graph algebras: from trees to forests The path space of a finite directed graph E is a forest T_E of rooted trees.

Problems arise:

- ▶ The trees in the forest are not necessarily homogeneous.
- ▶ Restrictions need not be uniquely determined.
- Automorphisms of T_E need not be graph automorphisms of E.

Path spaces of graph algebras: from trees to forests The path space of a finite directed graph E is a forest T_E of rooted trees.

Problems arise:

- ▶ The trees in the forest are not necessarily homogeneous.
- Restrictions need not be uniquely determined.
- Automorphisms of T_E need not be graph automorphisms of E.

In particular, in general the source map is not equivariant $s(g \cdot e) \neq g \cdot s(e)$ (eg swapping 31 and 32)

Small changes make big differences

 \mathbf{x}

Path spaces of finite directed graphs, E

Generalise: replace X by edges E^1 in a finite directed graph E.

Suppose $E = (E^0, E^1, r, s)$ is a directed graph with vertex set E^0 , edge set E^1 , and range and source maps $r, s: E^1 \rightarrow E^0$. Write

$$\textit{\textit{E}}^{\textit{k}} = \{ \mu = \mu_1 \cdots \mu_{\textit{k}} \colon \mu_i \in \textit{\textit{E}}^1, \textit{\textit{s}}(\mu_i) = \textit{\textit{r}}(\mu_{i+1}) \}$$

for the set of paths of length k in E, E^0 for the set of vertices, and define $E^* := \bigsqcup_{k \ge 0} E^k$.

We recover the previous work by taking *E* to be the graph $(\{*\}, X, r, s)$ in which r(x) = r(y) = s(x) = s(y) = * for all $x, y \in X = E^1$ and $E^* = X^*$.

Path space T_E of finite directed graph E

The analogue of the tree T_X is the (undirected) graph T_E with vertex set $T^0 = E^*$ and edge set

$$\mathcal{T}^1 = \left\{ \{\mu, \mu e\} \colon \mu \in \mathcal{E}^*, e \in \mathcal{E}^1, \text{ and } s(\mu) = r(e)
ight\}.$$

The subgraph $vE^* = \{\mu \in E^* : r(\mu) = v\}$ is a rooted tree with root $v \in E^0$, and $T_E = \bigsqcup_{v \in E^0} vE^*$ is a disjoint union of trees, or *forest*.

Partial isomorphisms

Restrictions become problematic in this context; knowing an action on one tree in the forest doesn't constrain the action on other trees.

Suppose $E = (E^0, E^1, r, s)$ is a directed graph.

A partial isomorphism of T_E consists of two vertices $v, w \in E^0$ and a bijection $g: vE^* \to wE^*$ such that

 $g|_{vE^k}$ is a bijection onto wE^k for $k \in \mathbb{N}$, and $g(\mu e) \in g(\mu)E^1$ for all $\mu e \in vE^*$.

For $v \in E^0$, we write $id_v : vE^* \to vE^*$ for the partial isomorphism given by $id_v(\mu) = \mu$ for all $\mu \in vE^*$.

Denote the set of all partial isomorphisms of T_E by $Plso(E^*)$.

Define domain and codomain maps $d, c: \mathsf{PISO}(E^*) \to E^0$ so that $g: d(g)E^* \to c(g)E^*$.

Groupoids

A groupoid consists of

- ▶ a set *G* of morphisms,
- ▶ a set $G^0 \subseteq G$ of objects (the unit space of the groupoid),
- ▶ two functions $c, d: G \rightarrow G^0$, and
- \blacktriangleright a partially defined product $(g,h)\mapsto gh$ from

$$G^2:=\{(g,h):d(g)=c(h)\}$$
 to G

such that (G, G^0, c, d) is a category and such that each $g \in G$ has an inverse g^{-1} .

We write G to denote the groupoid. If $|G^0| = 1$, then G is a group.

$(\mathsf{PISO}(E^*), E^0, c, d)$ is a groupoid

Proposition

Suppose that $E = (E^0, E^1, r, s)$ is a directed graph with associated forest T_E .

Then $(\mathsf{Plso}(E^*), E^0, c, d)$ is a groupoid in which:

- the product is given by composition of functions,
- ▶ the identity isomorphism at $v \in E^0$ is $id_v : vE^* \rightarrow vE^*$, and
- ▶ the inverse of $g \in \mathsf{PISO}(E^*)$ is the inverse of the function $g : d(g)E^* \to c(g)E^*$.

Groupoid action

Suppose that E is a directed graph and G is a groupoid with unit space E^0 .

An action of G on the path space E^* is a (unit-preserving) groupoid homomorphism $\phi: G \rightarrow \mathsf{Plso}(E^*)$.

The action is faithful if ϕ is one-to-one.

If the homomorphism is fixed, we usually write $g \cdot \mu$ for $\phi_g(\mu)$. This applies in particular when G arises as a subgroupoid of $\mathsf{Plso}(E^*)$.

Self-similar groupoid action (G, E)

Definition

Suppose $E = (E^0, E^1, r, s)$ is a directed graph and G is a groupoid with unit space E^0 which acts faithfully on T_E .

The action is self-similar if for every $g \in G$ and $e \in d(g)E^1$, there exists $h \in G$ such that

$$g \cdot (e\mu) = (g \cdot e)(h \cdot \mu)$$
 for all $\mu \in s(e)E^*$. (2)

Since the action is faithful, there is then exactly one such $h \in G$, and we write $g|_e := h$. Say (G, E) is a self-similar groupoid action.

Consequences of self-similar groupoid definition Lemma

Suppose $E = (E^0, E^1, r, s)$ is a directed graph and G is a groupoid with unit space E^0 acting self-similarly on T_E .

Then for $g, h \in G$ with d(h) = c(g) and $e \in d(g)E^1$, we have

•
$$d(g|_e) = s(e)$$
 and $c(g|_e) = s(g \cdot e)$,

►
$$r(g \cdot e) = g \cdot r(e)$$
 and $s(g \cdot e) = g|_e \cdot s(e)$,

• if
$$g = id_{r(e)}$$
, then $g|_e = id_{s(e)}$, and

•
$$(hg)|_e = (h|_{g \cdot e})(g|_e).$$

Consequences of self-similar groupoid definition

Suppose $E = (E^0, E^1, r, s)$ is a directed graph and G is a groupoid with unit space E^0 acting self-similarly on T_E .

Then for $g, h \in G$ with d(h) = c(g) and $e \in d(g)E^1$, we have

•
$$d(g|_e) = s(e)$$
 and $c(g|_e) = s(g \cdot e)$,

►
$$r(g \cdot e) = g \cdot r(e)$$
 and $s(g \cdot e) = g|_e \cdot s(e)$,

▶ if
$$g = id_{r(e)}$$
, then $g|_e = id_{s(e)}$, and

•
$$(hg)|_e = (h|_{g \cdot e})(g|_e).$$

Note that in general $s(g \cdot e) \neq g \cdot s(e)$, ie the source map is not *G*-equivariant. Indeed, $g \cdot s(e)$ will often not make sense: g maps $d(g)E^*$ onto $c(g)E^*$, and s(e) is not in $d(g)E^*$ unless s(e) = d(g).

University

Constructing self-similar groupoid actions

We use automata to construct self-similar groupoid actions.

An automaton over $E = (E^0, E^1, r_E, s_E)$ is

- a finite set A containing E^0 , with
- ▶ functions $r_A, s_A \colon A \to E^0$ such that $r_A(v) = v = s_A(v)$ if $v \in E^0 \subset A$, and
- ► a function

$$\begin{array}{cccc} A_{s_{A}} \times_{r_{E}} E^{1} & \rightarrow & E^{1}_{s_{E}} \times_{r_{A}} A \\ (a, e) & \mapsto & (a \cdot e, a|_{e}) \end{array}$$

such that:

(A1) for every
$$a \in A$$
, $e \mapsto a \cdot e$ is a bijection $s_A(a)E^1 \to r_A(a)E^1$;
(A2) $s_A(a|_e) = s_E(e)$ for all $(a, e) \in A_{s_A} \times_{r_E} E^1$;
(A3) $r_E(e) \cdot e = e$ and $r_E(e)|_e = s_E(e)$ for all $e \in E^1$.

We extend restriction to paths by defining $a|_{\mu} = (\cdots ((a|_{\mu_1})|_{\mu_2})|_{\mu_3} \cdots)|_{\mu_k}.$

We use automata over E to construct subgroupoids of $Plso(E^*)$.

We use automata over E to construct subgroupoids of $Plso(E^*)$.

Suppose we have an automaton A over a directed graph E.

For each $a \in A$, we construct a partial isomorphism f_a of $s(a)E^*$ onto $r(a)E^*$ so that $d(f_a) = s(a)$ and $c(f_a) = r(a)$.

We use automata over E to construct subgroupoids of $Plso(E^*)$.

Suppose we have an automaton A over a directed graph E. For each $a \in A$, we construct a partial isomorphism f_a of $s(a)E^*$ onto $r(a)E^*$ so that $d(f_a) = s(a)$ and $c(f_a) = r(a)$.

Theorem

Let G_A be the subgroupoid of $Plso(E^*)$ generated by $\{f_a : a \in A\}$. Then G_A acts faithfully on the path space E^* , and this action is self-similar.

We use automata over E to construct subgroupoids of $Plso(E^*)$.

Suppose we have an automaton A over a directed graph E. For each $a \in A$, we construct a partial isomorphism f_a of $s(a)E^*$ onto $r(a)E^*$ so that $d(f_a) = s(a)$ and $c(f_a) = r(a)$.

Theorem

Let G_A be the subgroupoid of $\mathsf{PIso}(E^*)$ generated by $\{f_a : a \in A\}$. Then G_A acts faithfully on the path space E^* , and this action is self-similar.

The action of G_A is faithful because G_A is constructed as a subgroupoid of $Plso(E^*)$. It is possible to construct unfaithful actions from some automata.

What about *k*-graphs?

Inspired by the work of Robertson and Steger on \tilde{A} -buildings, Kumjian and Pask defined a k-graph (Λ, d) to be

- ▶ a countable small category Λ with range and source maps r, s, and $\Lambda^0 = Obj(\Lambda)$, together with
- ▶ a degree functor $d: \Lambda \to \mathbb{N}^k$ satisfying the factorisation property that: for every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$ there are unique elements $\mu, \nu \in \Lambda$ such that $\lambda = \mu \nu$ with $d(\mu = m$ and $d(\nu) = n$.

What about *k*-graphs?

Inspired by the work of Robertson and Steger on \tilde{A} -buildings, Kumjian and Pask defined a k-graph (Λ, d) to be

- ▶ a countable small category Λ with range and source maps r, s, and $\Lambda^0 = Obj(\Lambda)$, together with
- ▶ a degree functor $d: \Lambda \to \mathbb{N}^k$ satisfying the factorisation property that: for every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$ there are unique elements $\mu, \nu \in \Lambda$ such that $\lambda = \mu \nu$ with $d(\mu = m$ and $d(\nu) = n$.

(Afsar, Brownlowe, R, Whittaker) A partial isomorphism of Λ consists of vertices $v, w \in \Lambda^0$ and a bijection $g: v\Lambda \to w\Lambda$ satisfying

- ▶ for all $p \in \mathbb{N}^k$, the restriction $g|_{v\Lambda^p}$ is a bijection of $v\Lambda^p$ onto $w\Lambda^p$; and
- ▶ $g(\lambda e) \in g(\lambda)\Lambda$ for all $\lambda \in v\Lambda$ and edges $e \in s(\lambda)\Lambda$.

We write $\mathsf{Plso}(\Lambda)$ for the set of all partial isomorphisms of Λ ; it's a groupoid, units Λ^0 .

Self-similar actions of on k-graphs

Let Λ be a k-graph and let G be a groupoid with unit space $G^{(0)} = \Lambda^0$. An action of G on Λ is a groupoid homomorphism $\varphi : G \to \mathsf{Plso}(\Lambda)$. Identifying id_v with v for $v \in \Lambda^0$, we see that φ is unit preserving. We say φ is *faithful* if it is injective.

When it is not ambiguous to do so, we write $g \cdot \mu$ for $\varphi_g(\mu)$.

Self-similar actions of on k-graphs

Let Λ be a *k*-graph and let *G* be a groupoid with unit space $G^{(0)} = \Lambda^0$. An action of *G* on Λ is a groupoid homomorphism $\varphi : G \to \mathsf{Plso}(\Lambda)$. Identifying id_v with *v* for $v \in \Lambda^0$, we see that φ is unit preserving. We say φ is *faithful* if it is injective.

When it is not ambiguous to do so, we write $g \cdot \mu$ for $\varphi_g(\mu)$.

A self-similar groupoid action (G, Λ) consists of a *k*-graph Λ , a groupoid *G* with unit space Λ^0 and a faithful action of *G* on Λ such that for every $g \in G$ and edge $e \in \mathsf{dom}(g)\Lambda$, there exists $h \in G$ satisfying

$$g \cdot (e\lambda) = (g \cdot e)(h \cdot \lambda)$$
 for all $\lambda \in s(e)\Lambda$. (3)

Since the action is faithful, there is a unique h satisfying (3), and we write $g|_e := h$.

The right framework: coloured graphs, pretty pictures

The right framework in which to develop the *k*-graph theory appears to be coloured graphs. We define automata associated to coloured graphs, and the relations correspond to multi-dimensional commuting diagrams. So $\lambda := ef \sim f'e' \Rightarrow (a \cdot e)(a|_e \cdot f) \sim (a \cdot f')(a|_{f'} \cdot e')$ corresponds to

What does and doesn't work for k-graphs

We can again construct Toeplitz algebras and calculate KMS states explicitly.

Constraints imposed by product systems limit actions. For example, you can't swap colours.

G-periodicity and tracial states on $C^*(G)$ continue to play a crucial role in calculations.

For k-graphs, G-periodicity appears through the shift map σ and

$$\mathsf{Per}(G,\Lambda) := \left\{ p - q : \begin{array}{l} p, q \in \mathbb{N}^k, \text{ and there exists } g \in G \text{ such that} \\ \sigma^p(x) = \sigma^q(g \cdot x) \text{ for all } x \in \mathsf{dom}(g)\Lambda^\infty \end{array} \right\}$$

Questions?

Thank you for your attention.

Questions?

Thank you for your attention.

States on the Cuntz-Pimsner algebra $\mathcal{O}(G, X)$

Lemma

Let (G, X) be a self-similar action. If ϕ is a KMS_{β} state on $\mathcal{O}(G, X)$, then $\beta = \ln |X|$.

Lemma

Let (G, X) be a contracting self-similar action with nucleus \mathcal{N} . For each $g \in \mathcal{N} \setminus \{e\}$, let

$$F_g^n = \{\mu \in X^n \colon g \cdot \mu = \mu \text{ and } g|_\mu = e\}.$$

The sequence $\{|X|^{-n}|F_g^n|\}$ is increasing and converges to a limit c_g satisfying $0 \le c_g < 1$ and there is a unique $KMS_{\ln|X|}$ state ϕ for $\mathcal{O}(G, X)$ satisfying

$$\phi(u_g)=c_g.$$

States on the Toeplitz algebra $\mathcal{T}(G, X)$

Theorem

Let (G, X) be a self-similar action, $M = \bigoplus_{x \in X} C^*(G)$ and $\sigma : \mathbb{R} \to \operatorname{Aut} \mathcal{T}(G, X)$ satisfy $\sigma_t(s_v u_g s_w^*) = e^{it(|v| - |w|)} s_v u_g s_w^*$ for $v, w \in X^*$ and $g \in G$. 1. For $\beta < \ln |X|$, there are no KMS_β states. 2. For $\beta = \ln |X|$, every $KMS_{\ln |X|}$ state satisfies $\phi_{\ln |X|}(u_g u_h) = \phi_{\ln |X|}(u_h u_g)$ for all $g, h \in G$, $\phi_{\ln |X|}(s_v u_g s_w^*) = \begin{cases} e^{-(\ln |X|)|v|} \phi_{\ln |X|}(u_g) & \text{if } v = w \\ 0 & \text{otherwise,} \end{cases}$

and factors through $\mathcal{O}(G, X)$.

 For β > ln |X|, the simplex of KMS_β-states of T(M) is homeomorphic to the simplex of normalized traces on C^{*}(G) via an explicit construction τ → ψ_{β,τ}.

States on the Toeplitz algebra: ψ_{β,τ_e}

Suppose that (G, X) is a self-similar action and $\beta > \ln |X|$. Suppose τ_e is the trace on C * (G) satisfying

$$\tau_{\mathbf{e}}(\delta_{\mathbf{g}}) = \begin{cases} 1 & \text{if } \mathbf{g} = \mathbf{e} \\ 0 & \text{otherwise.} \end{cases}$$

For $g \in G$ and $k \ge 0$, we set

$$F_g^k := \{\mu \in X^k : g \cdot \mu = \mu \text{ and } g|_v = e\}.$$

Then there is a KMS_{β} state ψ_{β,τ_e} on $(\mathbb{T}(G,X),\sigma)$ such that

$$\psi_{\beta,\tau_e}(\mathbf{s}_{\mathbf{v}}\mathbf{u}_{\mathbf{g}}\mathbf{s}_{\mathbf{w}}^*) = \begin{cases} e^{-\beta|\mathbf{v}|}(1-|\mathbf{X}|e^{-\beta}) \sum_{k=0}^{\infty} e^{-\beta k} |F_{\mathbf{g}}^k| & \text{if } \mathbf{v} = \mathbf{w} \\ 0 & \text{otherwise.} \end{cases}$$

States on the Toeplitz algebra: ψ_{β,τ_1}

Suppose that (G, X) is a self-similar action and $\beta > \ln |X|$. Suppose $\tau_1 : C^*(G) \to \mathbb{C}$ is the integrated form of the trivial representation sending $g \mapsto 1$ for all $g \in G$. For $g \in G$ and $k \ge 0$, we set

$$G_{g}^{k} := \{ \mu \in X^{k} : g \cdot \mu = \mu \}.$$

Then there is a KMS $_{\beta}$ state ψ_{β,τ_1} on $(\mathbb{T}(G,X),\sigma)$ such that

$$\psi_{\beta,\tau_1}(s_v u_g s_w^*) = \begin{cases} e^{-\beta|v|}(1-|X|e^{-\beta}) \sum_{k=0}^{\infty} e^{-\beta k} |G_g^k| & \text{if } v = w \\ 0 & \text{otherwise.} \end{cases}$$

Computing F_g^k and G_g^k : the Moore diagram

Suppose (G, X) is a self-similar action.

A Moore diagram is a directed graph whose vertices are elements of G and edges are labelled by pairs of elements of X.

In a Moore diagram the arrow

$$g \xrightarrow{(x,y)} h$$

means that $g \cdot x = y$ and $g|_x = h$.

We can draw a Moore diagram for any subset S of G that is closed under restriction.

The Moore diagram of the nucleus helps us calculate F_g^k and G_g^k ; we look for labels of the form (x, x), called stationary paths.

Computing the nucleus

Proposition

Suppose (G, X) is a self-similar action and S is a subset of G that is closed under restriction. Every vertex in the Moore diagram of S that can be reached from a cycle belongs to the nucleus.

For the basilica group, the minimal Moore diagram we need to consider is

KMS states on $\mathcal{T}(G, E)$

Proposition

Let *E* be a finite graph with no sources and vertex matrix *B*, and let $\rho(B)$ be the spectral radius of *B*.

Suppose that (G, E) is a self-similar groupoid action.

 $\text{Let } \sigma: \mathbb{R} \to \text{Aut } \mathcal{T}(G, E), \quad \sigma_t(s_\mu u_g s_\nu^*) = e^{it(|\mu| - |\nu|)} s_\mu u_g s_\nu^*.$

- For $\beta < \ln \rho(B)$, there are no KMS_{β}-states for σ .
- ▶ For $\beta \ge \ln \rho(B)$, a state ϕ is a KMS_{β}-state for σ if and only if $\phi \circ i_{C^*(G)}$ is a trace on $C^*(G)$ and

$$\phi(\mathbf{s}_{\mu}\mathbf{u}_{\mathbf{g}}\mathbf{s}_{\nu}^{*}) = \delta_{\mu,\nu}\delta_{\mathbf{s}(\mu),\mathbf{c}(\mathbf{g})}\delta_{\mathbf{s}(\nu),\mathbf{d}(\mathbf{g})}e^{-\beta|\mu|}\phi(\mathbf{u}_{\mathbf{g}})$$

for $g \in S$ and $\mu, \nu \in E^*$.

KMS states on $\mathcal{T}(G, \Lambda)$

Theorem

Let Λ be a finite k-graph with no sources, and (G, Λ) a self-similar groupoid action. For $1 \leq i \leq k$, let B_i be the matrix with entries $B_i(v, w) = |v\Lambda^{e_i}w|$ and let $\rho(B_i)$ be the spectral radius of B_i . Take $r \in (0, \infty)^k$ and let $\sigma : \mathbb{R} \to \operatorname{Aut} \mathbb{T}(G, \Lambda)$ be the dynamics

$$\sigma_t(t_\lambda u_g t_\mu^*) = e^{itr \cdot (d(\lambda) - d(\mu))} t_\lambda u_g t_\mu^*.$$

Suppose that $\beta r_i > \ln \rho(B_i)$ for all $1 \le i \le k$.

▶ If τ is tracial state on $C^*(G)$, then the series $\sum_{p \in \mathbb{N}^k} \sum_{\lambda \in \Lambda^p} e^{-\beta r \cdot p} \tau(i_{s(\lambda)})$ converges to a positive number $Z(\beta, \tau)$, and there is a KMS_β-state ϕ_{τ} of $(\mathbb{T}(G, \Lambda), \sigma)$ such that

$$\phi_{\tau}(t_{\lambda}u_{g}t_{\mu}^{*}) = \delta_{\lambda,\mu}Z(\beta,\tau)^{-1} \sum_{p \ge d(\lambda)} e^{-\beta r \cdot p} \sum_{\{\nu \in \mathfrak{s}(\lambda)\Lambda^{p-d(\lambda)}: g \cdot \nu = \nu\}} \tau(i_{g|_{\nu}}).$$

The map τ → φ_τ is an affine isomorphism of the simplex of tracial states of C^{*}(G) onto the simplex of KMS_β-states of (T(G, Λ), σ).