An algebraist in Operator Algebras

A self-similar perspective

Jacqui Ramagge

BMC 2021

Overview

Self-similar actions of groups

Jumping to graph algebras and path spaces

Self-similar actions of groupoids on graph algebras

Self-similar actions of groupoids on k-graphs
图 Durham
University

Thinking differently

University

Automorphisms of graphs help us generate examples of C^{*}-algebras

Suppose we have a graph Γ with a vertex set Γ^{0}.
Each vertex $v \in \Gamma^{0}$ represents a basis element δ_{v}.
A graph automorphism $\alpha: \Gamma \rightarrow \Gamma$ represents a linear map sending $\delta_{v} \mapsto \delta_{\alpha(v)}$.
The edges between the vertices restrict the operators that can be represented by automorphisms.

We'll look at various types of self-similar actions.

The alphabet X and the tree T_{X}

Suppose X is a finite set, X^{k} is the set of k-tuples in X, with $X^{0}=\{*\}$, and define $X^{*}:=\bigsqcup_{k \geq 0} X^{k}=\{$ finite words in $X\}$.
$T=T_{X}$ is an infinite homogeneous rooted tree with

- vertex set $T_{X}^{0}=X^{*}=\left\{\mu \in X^{*}\right\}$
- edge set $T_{X}^{1}=\left\{\{\mu, \mu x\}: \mu \in X^{*}\right.$ and $\left.x \in X\right\}$
- root the empty word, *

University

The alphabet X and the tree T_{X}

Suppose X is a finite set, X^{k} is the set of k-tuples in X, with $X^{0}=\{*\}$, and define $X^{*}:=\bigsqcup_{k \geq 0} X^{k}=\{$ finite words in $X\}$.

$$
T_{\{x, y\}}
$$

$T=T_{X}$ is an infinite homogeneous rooted tree with

- vertex set $T_{X}^{0}=X^{*}=\left\{\mu \in X^{*}\right\}$
- edge set $T_{X}^{1}=\left\{\{\mu, \mu x\}: \mu \in X^{*}\right.$ and $\left.x \in X\right\}$
- root the empty word, *

We label

- edges in T_{X} with elements of X
- paths and vertices in T_{X} with elements of X^{*}.

University

The alphabet X and the tree T_{X}

Suppose X is a finite set, X^{k} is the set of k-tuples in X, with $X^{0}=\{*\}$, and define $X^{*}:=\bigsqcup_{k \geq 0} X^{k}=\{$ finite words in $X\}$.

$$
T_{\{x, y\}}
$$

$T=T_{X}$ is an infinite homogeneous rooted tree with

- vertex set $T_{X}^{0}=X^{*}=\left\{\mu \in X^{*}\right\}$
- edge set $T_{X}^{1}=\left\{\{\mu, \mu x\}: \mu \in X^{*}\right.$ and $\left.x \in X\right\}$
- root the empty word, *

We label

- edges in T_{X} with elements of X
- paths and vertices in T_{X} with elements of X^{*}.

Q Durham

University

The boundary X^{ω} of T_{X} can be identified with semi-infinite words in X starting at $*$, so $X^{\omega}=\left\{x_{1} x_{2} \ldots: x_{i} \in X\right\}$.

Automorphisms of $T=T_{X}$

From a traditional graph-theoretic perspective, an automorphism α of T consists of a family of bijections $\alpha_{k}: X^{k} \rightarrow X^{k}$ for $k \geq 0$ such that for all $\mu, \nu \in X^{*}$

$$
\left\{\alpha_{k}(\mu), \alpha_{k+1}(\nu)\right\} \in T^{1} \quad \Leftrightarrow \quad\{\mu, \nu\} \in T^{1}
$$

Lemma
Suppose $\alpha: T^{0} \rightarrow T^{0}$ is a bijection satisfying

$$
\begin{equation*}
\alpha\left(X^{k}\right)=X^{k} \quad \text { for all } k, \text { and } \quad \alpha(\mu x) \in \alpha(\mu) X \quad \text { for all } \mu \in X^{k} \text { and } x \in X \tag{1}
\end{equation*}
$$

Define $\alpha_{k}:=\left.\alpha\right|_{X^{k}}$. Then $\left\{\alpha_{k}\right\}$ is an automorphism α of T. The inverse is also an automorphism of T, and also satisfies (1).

University

Automorphisms of $T=T_{X}$

From a traditional graph-theoretic perspective, an automorphism α of T consists of a family of bijections $\alpha_{k}: X^{k} \rightarrow X^{k}$ for $k \geq 0$ such that for all $\mu, \nu \in X^{*}$

$$
\left\{\alpha_{k}(\mu), \alpha_{k+1}(\nu)\right\} \in T^{1} \quad \Leftrightarrow \quad\{\mu, \nu\} \in T^{1}
$$

Lemma
Suppose $\alpha: T^{0} \rightarrow T^{0}$ is a bijection satisfying

$$
\begin{equation*}
\alpha\left(X^{k}\right)=X^{k} \quad \text { for all } k, \text { and } \quad \alpha(\mu x) \in \alpha(\mu) X \quad \text { for all } \mu \in X^{k} \text { and } x \in X \tag{1}
\end{equation*}
$$

Define $\alpha_{k}:=\left.\alpha\right|_{X^{k}}$. Then $\left\{\alpha_{k}\right\}$ is an automorphism α of T. The inverse is also an automorphism of T, and also satisfies (1).
If $\beta=\left\{\beta_{k}\right\}$ is an automorphism, each $\left\{\beta_{k}(\mu), \beta_{k+1}(\mu x)\right\} \in T^{1}$, hence $\beta_{k+1}(\mu x) \in \beta_{k}(\mu) X$. So (1) provides an alternative, ostensibly weaker, characterisation of automorphisms.

University

Action of a group on T_{X}

A group G acts (by automorphisms) on T_{X} if it preserves adjacency (and hence depth).
Consider actions on X^{*} induced by an action on T_{X}.
In particular, the action of $g \in G$ can not split a path apart, but its action on an edge labelled $x \in X$ may differ depending on the level.

University

Action of a group on T_{X}

A group G acts (by automorphisms) on T_{X} if it preserves adjacency (and hence depth).
Consider actions on X^{*} induced by an action on T_{X}.
In particular, the action of $g \in G$ can not split a path apart, but its action on an edge labelled $x \in X$ may differ depending on the level.

So, in general, $\quad g \cdot(v w) \neq(g \cdot v)(g \cdot w) \quad$ for $g \in G, v, w \in X^{*}$.

Action of a group on T_{X}

A group G acts (by automorphisms) on T_{X} if it preserves adjacency (and hence depth).
Consider actions on X^{*} induced by an action on T_{X}.
In particular, the action of $g \in G$ can not split a path apart, but its action on an edge labelled $x \in X$ may differ depending on the level.

So, in general, $\quad g \cdot(v w) \neq(g \cdot v)(g \cdot w) \quad$ for $g \in G, v, w \in X^{*}$.

Here, $g \cdot(y x)=x x \neq(g \cdot x)(g \cdot y)$

University

Definition of a self-similar action

A self-similar action is a pair (G, X) consisting of a group G and a finite alphabet X with a faithful action of G on X^{*} satisfying $g \cdot *=*$ and
for all $(g, x) \in G \times X$, there exist $(h, y) \in G \times X$ such that

$$
g \cdot(x w)=y(h \cdot w) \quad \text { for all } w \in X^{*}
$$

University

Definition of a self-similar action

A self-similar action is a pair (G, X) consisting of a group G and a finite alphabet X with a faithful action of G on X^{*} satisfying $g \cdot *=*$ and
for all $(g, x) \in G \times X$, there exist $(h, y) \in G \times X$ such that

$$
g \cdot(x w)=y(h \cdot w) \quad \text { for all } w \in X^{*}
$$

It follows that
for all $g \in G, v \in X^{*}$, there exists a unique $h \in G$ such that

$$
g \cdot(v w)=(g \cdot v)(h \cdot w) \quad \text { for all } w \in X^{*}
$$

Call this $h \in G$ the restriction of g at v and write $h=\left.g\right|_{v}$.

University

An example - the odometer

Let $G=\mathbb{Z}=\langle a\rangle$ and $X=\{0,1\}$.
Define an action of \mathbb{Z} on X^{*} recursively by

$$
\begin{aligned}
& a \cdot(0 w)=1 w \\
& a \cdot(1 w)=0(a \cdot w)
\end{aligned}
$$

This corresponds to the diadic adding machine; it coincides with the rule of adding one to a diadic integer (with place value increasing towards the right).

University

Another example - the Basilica group

Let $X=\{0,1\}$ and

$$
G=\left\langle a, b: \sigma^{n}\left(\left[a, a^{b}\right]\right) \text { for all } n \in \mathbb{N}\right\rangle
$$

where σ is the substitution $\sigma(b)=a$ and $\sigma(a)=b^{2}$.
Define an action of G on X^{*} recursively by

$$
\begin{array}{ll}
a \cdot(0 w)=1(b \cdot w) & b \cdot(0 w)=0(a \cdot w) \\
a \cdot(1 w)=0 w & b \cdot(1 w)=1 w
\end{array}
$$

The Basilica group is an iterated monodromy group with many interesting properties, including being amenable.

University

The nucleus

A nucleus of a self-similar action (G, X) is a minimal set $\mathcal{N} \subseteq G$ satisfying the property for each $g \in G$, there exists $N \in \mathbb{N}$ such that

$$
\left.g\right|_{v} \in \mathcal{N} \text { for all words } v \in X^{n} \text { with } n \geq N .
$$

University

The nucleus

A nucleus of a self-similar action (G, X) is a minimal set $\mathcal{N} \subseteq G$ satisfying the property for each $g \in G$, there exists $N \in \mathbb{N}$ such that

$$
\left.g\right|_{v} \in \mathcal{N} \text { for all words } v \in X^{n} \text { with } n \geq N \text {. }
$$

A self-similar action is contracting if it has a finite nucleus.
For a contracting self-similar action (G, X), the nucleus is unique and equal to

$$
\mathcal{N}=\bigcup_{g \in G} \bigcap_{n \geq 0}\left\{\left.g\right|_{v}: v \in X^{*},|v| \geq n\right\}
$$

University

The bimodule and algebras

Given a self-similar action (G, X), let $C^{*}(G)$ be the full group C^{*}-algebra of G and define

$$
M=M_{(G, X)}=\bigoplus_{x \in X} C^{*}(G)
$$

M can be given the structure of a free right Hilbert $C^{*}(G)$-module and we can build a faithful, nondegenerate representation $U: G \rightarrow \mathcal{U} \mathcal{L}(M)$.

We can build Cuntz-Pimsner algebras $\mathcal{O}(G, X)$ (Nekrashevych) and Toeplitz algebras $\mathcal{T}(G, X)$ (Laca, R., Raeburn, Whittaker) and we can explicitly calculate KMS states (LRRW).

University

The bimodule and algebras

Given a self-similar action (G, X), let $C^{*}(G)$ be the full group C^{*}-algebra of G and define

$$
M=M_{(G, X)}=\bigoplus_{x \in X} C^{*}(G)
$$

M can be given the structure of a free right Hilbert $C^{*}(G)$-module and we can build a faithful, nondegenerate representation $U: G \rightarrow \mathcal{U} \mathcal{L}(M)$.

We can build Cuntz-Pimsner algebras $\mathcal{O}(G, X)$ (Nekrashevych) and Toeplitz algebras $\mathcal{T}(G, X)$ (Laca, R., Raeburn, Whittaker) and we can explicitly calculate KMS states (LRRW).

If (G, X) is contracting with nucleus $\{e\}$ then $\mathcal{O}(G, X)=\mathcal{O}_{|X|}$.

University

The bimodule and algebras

Given a self-similar action (G, X), let $C^{*}(G)$ be the full group C^{*}-algebra of G and define

$$
M=M_{(G, X)}=\bigoplus_{x \in X} C^{*}(G) .
$$

M can be given the structure of a free right Hilbert $C^{*}(G)$-module and we can build a faithful, nondegenerate representation $U: G \rightarrow \mathcal{U} \mathcal{L}(M)$.

We can build Cuntz-Pimsner algebras $\mathcal{O}(G, X)$ (Nekrashevych) and Toeplitz algebras $\mathcal{T}(G, X)$ (Laca, R., Raeburn, Whittaker) and we can explicitly calculate KMS states (LRRW).

If (G, X) is contracting with nucleus $\{e\}$ then $\mathcal{O}(G, X)=\mathcal{O}_{|X|}$.
There's a combinatorial way of calculating the nucleus using the Moore diagram;

Example: basilica group

$$
G=\left\langle a, b: \sigma^{n}\left(\left[a, a^{b}\right]\right) \text { for all } n \in \mathbb{N}\right\rangle
$$

where σ is the substitution $\sigma(b)=a$ and $\sigma(a)=b^{2}$, with a self-similar action (G, X) where $X=\{0,1\}$ satisfying

$$
\begin{aligned}
& a \cdot(0 w)=1(b \cdot w) \\
& a \cdot(1 w)=0 w
\end{aligned}
$$

$$
b \cdot(0 w)=0(a \cdot w)
$$

$$
b \cdot(1 w)=1 w
$$

Proposition

The basilica group action (G, X) is contracting, with nucleus

$$
\mathcal{N}=\left\{e, a, b, a^{-1}, b^{-1}, a b^{-1}, b a^{-1}\right\} .
$$

图 Durham

University

Example: basilica group

The critical value for KMS_{β} states is $\beta_{c}=\ln |X|=\ln 2$.

Proposition

The system $(\mathcal{O}(G, X), \sigma)$ has a unique $K M S_{\ln 2}$ state, which is given on the nucleus $\mathcal{N}=\left\{e, a, b, a^{-1}, b^{-1}, a b^{-1}, b a^{-1}\right\}$ by

$$
\phi\left(u_{g}\right)= \begin{cases}1 & \text { for } g=e \\ \frac{1}{2} & \text { for } g=b, b^{-1} \\ 0 & \text { for } g=a, a^{-1}, a b^{-1}, b a^{-1}\end{cases}
$$

University

Path space interpretation

$$
T_{\{x, y\}}
$$

The tree $T_{\{x, y\}}$ represents the path space of the graph

More generally, T_{X} represents the path space of a bouquet of $|X|$ loops.

University

Path spaces of graph algebras: from trees to forests

The path space of a finite directed graph E is a forest T_{E} of rooted trees.

Problems arise:

- The trees in the forest are not necessarily homogeneous.
- Restrictions need not be uniquely determined.
- Automorphisms of T_{E} need not be graph automorphisms of E.

University

Path spaces of graph algebras: from trees to forests

The path space of a finite directed graph E is a forest T_{E} of rooted trees.

T_{E}

Problems arise:

- The trees in the forest are not necessarily homogeneous.
- Restrictions need not be uniquely determined.
- Automorphisms of T_{E} need not be graph automorphisms of E.

In particular, in general the source map is not equivariant $s(g \cdot e) \neq g \cdot s(e)$ (eg swapping 31 and 32)
University

Small changes make big differences

University

Path spaces of finite directed graphs, E

Generalise: replace X by edges E^{1} in a finite directed graph E.
Suppose $E=\left(E^{0}, E^{1}, r, s\right)$ is a directed graph with vertex set E^{0}, edge set E^{1}, and range and source maps $r, s: E^{1} \rightarrow E^{0}$. Write

$$
E^{k}=\left\{\mu=\mu_{1} \cdots \mu_{k}: \mu_{i} \in E^{1}, s\left(\mu_{i}\right)=r\left(\mu_{i+1}\right)\right\}
$$

for the set of paths of length k in E, E^{0} for the set of vertices, and define $E^{*}:=\bigsqcup_{k \geq 0} E^{k}$.
We recover the previous work by taking E to be the graph $(\{*\}, X, r, s)$ in which $r(x)=r(y)=s(x)=s(y)=*$ for all $x, y \in X=E^{1}$ and $E^{*}=X^{*}$.

University

Path space T_{E} of finite directed graph E

The analogue of the tree T_{X} is the (undirected) graph T_{E} with vertex set $T^{0}=E^{*}$ and edge set

$$
T^{1}=\left\{\{\mu, \mu e\}: \mu \in E^{*}, e \in E^{1}, \text { and } s(\mu)=r(e)\right\} .
$$

The subgraph $v E^{*}=\left\{\mu \in E^{*}: r(\mu)=v\right\}$ is a rooted tree with root $v \in E^{0}$, and $T_{E}=\bigsqcup_{v \in E^{0}} v E^{*}$ is a disjoint union of trees, or forest.

Durham

University

Partial isomorphisms

Restrictions become problematic in this context; knowing an action on one tree in the forest doesn't constrain the action on other trees.

Suppose $E=\left(E^{0}, E^{1}, r, s\right)$ is a directed graph.
A partial isomorphism of T_{E} consists of two vertices $v, w \in E^{0}$ and a bijection $g: v E^{*} \rightarrow w E^{*}$ such that

$$
\left.g\right|_{v E^{k}} \text { is a bijection onto } w E^{k} \text { for } k \in \mathbb{N} \text {, and }
$$

$$
g(\mu e) \in g(\mu) E^{1} \text { for all } \mu e \in v E^{*}
$$

For $v \in E^{0}$, we write $\operatorname{id}_{v}: v E^{*} \rightarrow v E^{*}$ for the partial isomorphism given by $\operatorname{id}_{v}(\mu)=\mu$ for all $\mu \in v E^{*}$.

Denote the set of all partial isomorphisms of T_{E} by $\operatorname{PIso}\left(E^{*}\right)$.
Define domain and codomain maps $d, c: \operatorname{PIso}\left(E^{*}\right) \rightarrow E^{0}$ so that $g: d(g) E^{*} \rightarrow c(g) E^{*}$.

Groupoids

A groupoid consists of

- a set G of morphisms,
- a set $G^{0} \subseteq G$ of objects (the unit space of the groupoid),
- two functions $c, d: G \rightarrow G^{0}$, and
- a partially defined product $(g, h) \mapsto g h$ from

$$
G^{2}:=\{(g, h): d(g)=c(h)\} \text { to } G
$$

such that $\left(G, G^{0}, c, d\right)$ is a category and such that each $g \in G$ has an inverse g^{-1}.
We write G to denote the groupoid. If $\left|G^{0}\right|=1$, then G is a group.

University

(Plso $\left.\left(E^{*}\right), E^{0}, c, d\right)$ is a groupoid

Proposition

Suppose that $E=\left(E^{0}, E^{1}, r, s\right)$ is a directed graph with associated forest T_{E}.
Then ($\left.\operatorname{Plso}\left(E^{*}\right), E^{0}, c, d\right)$ is a groupoid in which:

- the product is given by composition of functions,
- the identity isomorphism at $v \in E^{0}$ is $\operatorname{id}_{v}: v E^{*} \rightarrow v E^{*}$, and
- the inverse of $g \in \operatorname{Plso}\left(E^{*}\right)$ is the inverse of the function $g: d(g) E^{*} \rightarrow c(g) E^{*}$.

University

Groupoid action

Suppose that E is a directed graph and G is a groupoid with unit space E^{0}.
An action of G on the path space E^{*} is a (unit-preserving) groupoid homomorphism $\phi: G \rightarrow \operatorname{Plso}\left(E^{*}\right)$.

The action is faithful if ϕ is one-to-one.
If the homomorphism is fixed, we usually write $g \cdot \mu$ for $\phi_{g}(\mu)$.
This applies in particular when G arises as a subgroupoid of $\operatorname{PIso}\left(E^{*}\right)$.

图 Durham
University

Self-similar groupoid action (G, E)

Definition

Suppose $E=\left(E^{0}, E^{1}, r, s\right)$ is a directed graph and G is a groupoid with unit space E^{0} which acts faithfully on T_{E}.

The action is self-similar if for every $g \in G$ and $e \in d(g) E^{1}$, there exists $h \in G$ such that

$$
\begin{equation*}
g \cdot(e \mu)=(g \cdot e)(h \cdot \mu) \text { for all } \mu \in s(e) E^{*} . \tag{2}
\end{equation*}
$$

Since the action is faithful, there is then exactly one such $h \in G$, and we write $\left.g\right|_{e}:=h$. Say (G, E) is a self-similar groupoid action.

Consequences of self-similar groupoid definition

Lemma
Suppose $E=\left(E^{0}, E^{1}, r, s\right)$ is a directed graph and G is a groupoid with unit space E^{0} acting self-similarly on T_{E}.

Then for $g, h \in G$ with $d(h)=c(g)$ and $e \in d(g) E^{1}$, we have

- $d\left(\left.g\right|_{e}\right)=s(e)$ and $c\left(\left.g\right|_{e}\right)=s(g \cdot e)$,
$-r(g \cdot e)=g \cdot r(e) \quad$ and $\quad s(g \cdot e)=\left.g\right|_{e} \cdot s(e)$,
- if $g=\mathrm{id}_{r(e)}$, then $\left.g\right|_{e}=\mathrm{id}_{s(e)}$, and
- $\left.(h g)\right|_{e}=\left(\left.h\right|_{g \cdot e}\right)\left(\left.g\right|_{e}\right)$.

University

Consequences of self-similar groupoid definition

 Lemma

 Lemma}Suppose $E=\left(E^{0}, E^{1}, r, s\right)$ is a directed graph and G is a groupoid with unit space E^{0} acting self-similarly on T_{E}.

Then for g, $h \in G$ with $d(h)=c(g)$ and $e \in d(g) E^{1}$, we have

- $d\left(\left.g\right|_{e}\right)=s(e)$ and $c\left(\left.g\right|_{e}\right)=s(g \cdot e)$,
- $r(g \cdot e)=g \cdot r(e) \quad$ and $\quad s(g \cdot e)=\left.g\right|_{e} \cdot s(e)$,
- if $g=\mathrm{id}_{r(e)}$, then $\left.g\right|_{e}=\mathrm{id}_{s(e)}$, and
- $\left.(h g)\right|_{e}=\left(\left.h\right|_{g \cdot e}\right)\left(\left.g\right|_{e}\right)$.

Note that in general $s(g \cdot e) \neq g \cdot s(e)$, ie the source map is not G-equivariant. Indeed, $g \cdot s(e)$ will often not make sense: g maps $d(g) E^{*}$ onto $c(g) E^{*}$, and $s(e)$ is not in $d(g) E^{*}$ unless $s(e)=d(g)$.

University

Constructing self-similar groupoid actions

We use automata to construct self-similar groupoid actions.
An automaton over $E=\left(E^{0}, E^{1}, r_{E}, s_{E}\right)$ is

- a finite set A containing E^{0}, with
- functions $r_{A}, s_{A}: A \rightarrow E^{0}$ such that $r_{A}(v)=v=s_{A}(v)$ if $v \in E^{0} \subset A$, and
- a function

$$
\begin{aligned}
A_{s_{A} \times{ }_{r_{E}} E^{1}} & \rightarrow E^{1} s_{s_{E}} \times r_{A} A \\
(a, e) & \mapsto\left(a \cdot e,\left.a\right|_{e}\right)
\end{aligned}
$$

such that:
(A1) for every $a \in A, e \mapsto a \cdot e$ is a bijection $s_{A}(a) E^{1} \rightarrow r_{A}(a) E^{1}$;
(A2) $s_{A}\left(\left.a\right|_{e}\right)=s_{E}(e)$ for all $(a, e) \in A_{s_{A}} \times_{r_{E}} E^{1}$;
(A3) $r_{E}(e) \cdot e=e$ and $\left.r_{E}(e)\right|_{e}=s_{E}(e)$ for all $e \in E^{1}$.

We extend restriction to paths by defining
University

$$
\left.a\right|_{\mu}=\left.\left(\left.\cdots\left(\left.\left(\left.a\right|_{\mu_{1}}\right)\right|_{\mu_{2}}\right)\right|_{\mu_{3}} \cdots\right)\right|_{\mu_{k}} .
$$

Constructing self-similar groupoid actions from directed graphs

We use automata over E to construct subgroupoids of $\operatorname{Plso}\left(E^{*}\right)$.

University

Constructing self-similar groupoid actions from directed graphs

We use automata over E to construct subgroupoids of $\operatorname{Plso}\left(E^{*}\right)$.
Suppose we have an automaton A over a directed graph E.
For each $a \in A$, we construct a partial isomorphism f_{a} of $s(a) E^{*}$ onto $r(a) E^{*}$ so that $d\left(f_{a}\right)=s(a)$ and $c\left(f_{a}\right)=r(a)$.

University

Constructing self-similar groupoid actions from directed graphs

We use automata over E to construct subgroupoids of $\operatorname{Plso}\left(E^{*}\right)$.
Suppose we have an automaton A over a directed graph E.
For each $a \in A$, we construct a partial isomorphism f_{a} of $s(a) E^{*}$ onto $r(a) E^{*}$ so that $d\left(f_{a}\right)=s(a)$ and $c\left(f_{a}\right)=r(a)$.

Theorem
Let G_{A} be the subgroupoid of Plso $\left(E^{*}\right)$ generated by $\left\{f_{a}: a \in A\right\}$.
Then G_{A} acts faithfully on the path space E^{*}, and this action is self-similar.

University

Constructing self-similar groupoid actions from directed graphs

We use automata over E to construct subgroupoids of $\operatorname{Plso}\left(E^{*}\right)$.
Suppose we have an automaton A over a directed graph E.
For each $a \in A$, we construct a partial isomorphism f_{a} of $s(a) E^{*}$ onto $r(a) E^{*}$ so that $d\left(f_{a}\right)=s(a)$ and $c\left(f_{a}\right)=r(a)$.

Theorem

Let G_{A} be the subgroupoid of Plso $\left(E^{*}\right)$ generated by $\left\{f_{a}: a \in A\right\}$.
Then G_{A} acts faithfully on the path space E^{*}, and this action is self-similar.

The action of G_{A} is faithful because G_{A} is constructed as a subgroupoid of $\operatorname{Plso}\left(E^{*}\right)$.
It is possible to construct unfaithful actions from some automata.

University

What about k-graphs?

Inspired by the work of Robertson and Steger on \tilde{A}-buildings, Kumjian and Pask defined a k-graph (Λ, d) to be

- a countable small category Λ with range and source maps r, s, and $\Lambda^{0}=\operatorname{Obj}(\Lambda)$, together with
- a degree functor $d: \Lambda \rightarrow \mathbb{N}^{k}$ satisfying the factorisation property that: for every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^{k}$ with $d(\lambda)=m+n$ there are unique elements $\mu, \nu \in \Lambda$ such that $\lambda=\mu \nu$ with $d(\mu=m$ and $d(\nu)=n$.

University

What about k-graphs?

Inspired by the work of Robertson and Steger on \tilde{A}-buildings, Kumjian and Pask defined a k-graph (Λ, d) to be

- a countable small category Λ with range and source maps r, s, and $\Lambda^{0}=\operatorname{Obj}(\Lambda)$, together with
- a degree functor $d: \Lambda \rightarrow \mathbb{N}^{k}$ satisfying the factorisation property that: for every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^{k}$ with $d(\lambda)=m+n$ there are unique elements $\mu, \nu \in \Lambda$ such that $\lambda=\mu \nu$ with $d(\mu=m$ and $d(\nu)=n$.
(Afsar, Brownlowe, R, Whittaker) A partial isomorphism of Λ consists of vertices $v, w \in \Lambda^{0}$ and a bijection $g: v \Lambda \rightarrow w \Lambda$ satisfying
- for all $p \in \mathbb{N}^{k}$, the restriction $\left.g\right|_{v \Lambda^{p}}$ is a bijection of $v \Lambda^{p}$ onto $w \Lambda^{p}$; and
- $g(\lambda e) \in g(\lambda) \Lambda$ for all $\lambda \in v \Lambda$ and edges $e \in s(\lambda) \Lambda$.

We write $\operatorname{Plso}(\Lambda)$ for the set of all partial isomorphisms of Λ; it's a groupoid, units Λ^{0}.

University

Self-similar actions of on k-graphs

Let Λ be a k-graph and let G be a groupoid with unit space $G^{(0)}=\Lambda^{0}$. An action of G on Λ is a groupoid homomorphism $\varphi: G \rightarrow \operatorname{PIso(\Lambda)}$. Identifying id ${ }_{v}$ with v for $v \in \Lambda^{0}$, we see that φ is unit preserving. We say φ is faithful if it is injective. When it is not ambiguous to do so, we write $g \cdot \mu$ for $\varphi_{g}(\mu)$.

University

Self-similar actions of on k-graphs

Let Λ be a k-graph and let G be a groupoid with unit space $G^{(0)}=\Lambda^{0}$.
An action of G on Λ is a groupoid homomorphism $\varphi: G \rightarrow \operatorname{Plso}(\Lambda)$.
Identifying id ${ }_{v}$ with v for $v \in \Lambda^{0}$, we see that φ is unit preserving.
We say φ is faithful if it is injective.
When it is not ambiguous to do so, we write $g \cdot \mu$ for $\varphi_{g}(\mu)$.
A self-similar groupoid action (G, Λ) consists of a k-graph Λ, a groupoid G with unit space Λ^{0} and a faithful action of G on Λ such that for every $g \in G$ and edge $e \in \operatorname{dom}(g) \Lambda$, there exists $h \in G$ satisfying

$$
\begin{equation*}
g \cdot(e \lambda)=(g \cdot e)(h \cdot \lambda) \text { for all } \lambda \in s(e) \Lambda . \tag{3}
\end{equation*}
$$

Since the action is faithful, there is a unique h satisfying (3), and we write $\left.g\right|_{e}:=h$.

The right framework: coloured graphs, pretty pictures

The right framework in which to develop the k-graph theory appears to be coloured graphs. We define automata associated to coloured graphs, and the relations correspond to multi-dimensional commuting diagrams. So $\lambda:=e f \sim f^{\prime} e^{\prime} \Rightarrow(a \cdot e)\left(\left.a\right|_{e} \cdot f\right) \sim(a \cdot f)\left(\left.a\right|_{f} \cdot e^{\prime}\right)$ corresponds to

$$
\left.\left(\left.a\right|_{e}\right)\right|_{f}=\left.\left(\left.a\right|_{f}\right)\right|_{e^{\prime}}
$$

a

$$
\left.a\right|_{e}
$$

University

What does and doesn't work for k-graphs

We can again construct Toeplitz algebras and calculate KMS states explicitly.
Constraints imposed by product systems limit actions. For example, you can't swap colours.
G-periodicity and tracial states on $C^{*}(G)$ continue to play a crucial role in calculations.
For k-graphs, G-periodicity appears through the shift map σ and

$$
\operatorname{Per}(G, \Lambda):=\left\{p-q: \begin{array}{l}
p, q \in \mathbb{N}^{k}, \text { and there exists } g \in G \text { such that } \\
\sigma^{p}(x)=\sigma^{q}(g \cdot x) \text { for all } x \in \operatorname{dom}(g) \Lambda^{\infty}
\end{array}\right\}
$$

Questions?

Thank you for your attention.

University

Questions?

Thank you for your attention.

States on the Cuntz-Pimsner algebra $\mathcal{O}(G, X)$

Lemma

Let (G, X) be a self-similar action.
If ϕ is a $K M S_{\beta}$ state on $\mathcal{O}(G, X)$, then $\beta=\ln |X|$.
Lemma
Let (G, X) be a contracting self-similar action with nucleus \mathcal{N}.
For each $g \in \mathcal{N} \backslash\{e\}$, let

$$
F_{g}^{n}=\left\{\mu \in X^{n}: g \cdot \mu=\mu \text { and }\left.g\right|_{\mu}=e\right\} .
$$

The sequence $\left\{|X|^{-n}\left|F_{g}^{n}\right|\right\}$ is increasing and converges to a limit c_{g} satisfying $0 \leq c_{g}<1$ and there is a unique $K M S_{\ln |X|}$ state ϕ for $\mathcal{O}(G, X)$ satisfying

$$
\phi\left(u_{g}\right)=c_{g} .
$$

States on the Toeplitz algebra $\mathcal{T}(G, X)$

Theorem

Let (G, X) be a self-similar action, $M=\bigoplus_{x \in X} C^{*}(G)$ and $\sigma: \mathbb{R} \rightarrow$ Aut $\mathcal{T}(G, X)$ satisfy $\sigma_{t}\left(s_{v} u_{g} s_{w}^{*}\right)=e^{i t(|v|-|w|)} s_{v} u_{g} s_{w}^{*}$ for $v, w \in X^{*}$ and $g \in G$.

1. For $\beta<\ln |X|$, there are no $K M S_{\beta}$ states.
2. For $\beta=\ln |X|$, every $K M S_{\ln |X|}$ state satisfies $\phi_{\ln |X|}\left(u_{g} u_{h}\right)=\phi_{\ln |X|}\left(u_{h} u_{g}\right)$ for all $g, h \in G$,

$$
\phi_{\ln |X|}\left(s_{v} u_{g} s_{w}^{*}\right)= \begin{cases}e^{-(\ln |X|)|v|} \phi_{\ln |X|}\left(u_{g}\right) & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}
$$

and factors through $\mathcal{O}(G, X)$.
3. For $\beta>\ln |X|$, the simplex of $K M S_{\beta}$-states of $\mathcal{T}(M)$ is homeomorphic to the simplex of normalized traces on $C^{*}(G)$ via an explicit construction $\tau \mapsto \psi_{\beta, \tau}$.

States on the Toeplitz algebra: $\psi_{\beta, \tau_{e}}$

Suppose that (G, X) is a self-similar action and $\beta>\ln |X|$. Suppose τ_{e} is the trace on $C *(G)$ satisfying

$$
\tau_{e}\left(\delta_{g}\right)= \begin{cases}1 & \text { if } g=e \\ 0 & \text { otherwise }\end{cases}
$$

For $g \in G$ and $k \geq 0$, we set

$$
F_{g}^{k}:=\left\{\mu \in X^{k}: g \cdot \mu=\mu \text { and }\left.g\right|_{v}=e\right\}
$$

Then there is a KMS_{β} state $\psi_{\beta, \tau_{e}}$ on $(\mathbb{T}(G, X), \sigma)$ such that

$$
\psi_{\beta, \tau_{e}}\left(s_{v} u_{g} s_{w}^{*}\right)= \begin{cases}e^{-\beta|v|}\left(1-|X| e^{-\beta}\right) \sum_{k=0}^{\infty} e^{-\beta k}\left|F_{g}^{k}\right| & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}
$$

States on the Toeplitz algebra: $\psi_{\beta, \tau_{1}}$

Suppose that (G, X) is a self-similar action and $\beta>\ln |X|$.
Suppose $\tau_{1}: C^{*}(G) \rightarrow \mathbb{C}$ is the integrated form of the trivial representation sending $g \mapsto 1$ for all $g \in G$.
For $g \in G$ and $k \geq 0$, we set

$$
G_{g}^{k}:=\left\{\mu \in X^{k}: g \cdot \mu=\mu\right\}
$$

Then there is a KMS_{β} state $\psi_{\beta, \tau_{1}}$ on $(\mathbb{T}(G, X), \sigma)$ such that

$$
\psi_{\beta, \tau_{1}}\left(s_{v} u_{g} s_{w}^{*}\right)= \begin{cases}e^{-\beta|v|}\left(1-|X| e^{-\beta}\right) \sum_{k=0}^{\infty} e^{-\beta k}\left|G_{g}^{k}\right| & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}
$$

Computing F_{g}^{k} and G_{g}^{k} : the Moore diagram

Suppose (G, X) is a self-similar action.
A Moore diagram is a directed graph whose vertices are elements of G and edges are labelled by pairs of elements of X.

In a Moore diagram the arrow

$$
g \xrightarrow{(x, y)} h
$$

means that $g \cdot x=y$ and $\left.g\right|_{x}=h$.
We can draw a Moore diagram for any subset S of G that is closed under restriction.
The Moore diagram of the nucleus helps us calculate F_{g}^{k} and G_{g}^{k}; we look for labels of the form (x, x), called stationary paths.

Computing the nucleus

Proposition

Suppose (G, X) is a self-similar action and S is a subset of G that is closed under restriction. Every vertex in the Moore diagram of S that can be reached from a cycle belongs to the nucleus.
For the basilica group, the minimal Moore diagram we need to consider is

KMS states on $\mathcal{T}(G, E)$

Proposition

Let E be a finite graph with no sources and vertex matrix B, and let $\rho(B)$ be the spectral radius of B.

Suppose that (G, E) is a self-similar groupoid action.
Let $\sigma: \mathbb{R} \rightarrow$ Aut $\mathcal{T}(G, E), \quad \sigma_{t}\left(s_{\mu} u_{g} s_{\nu}^{*}\right)=e^{i t(|\mu|-|\nu|)} s_{\mu} u_{g} s_{\nu}^{*}$.

- For $\beta<\ln \rho(B)$, there are no $K M S_{\beta}$-states for σ.
- For $\beta \geq \ln \rho(B)$, a state ϕ is a $K M S_{\beta}$-state for σ if and only if $\phi \circ i_{C^{*}(G)}$ is a trace on $C^{*}(G)$ and

$$
\phi\left(s_{\mu} u_{g} s_{\nu}^{*}\right)=\delta_{\mu, \nu} \delta_{s(\mu), c(g)} \delta_{s(\nu), d(g)} e^{-\beta|\mu|} \phi\left(u_{g}\right)
$$

$$
\text { for } g \in S \text { and } \mu, \nu \in E^{*} \text {. }
$$

KMS states on $\mathcal{T}(G, \Lambda)$

Theorem

Let Λ be a finite k-graph with no sources, and (G, Λ) a self-similar groupoid action. For $1 \leq i \leq k$, let B_{i} be the matrix with entries $B_{i}(v, w)=\left|v \Lambda^{e_{i}} w\right|$ and let $\rho\left(B_{i}\right)$ be the spectral radius of B_{i}. Take $r \in(0, \infty)^{k}$ and let $\sigma: \mathbb{R} \rightarrow \operatorname{Aut} \mathbb{T}(G, \Lambda)$ be the dynamics

$$
\sigma_{t}\left(t_{\lambda} u_{g} t_{\mu}^{*}\right)=e^{i t r \cdot(d(\lambda)-d(\mu))} t_{\lambda} u_{g} t_{\mu}^{*}
$$

Suppose that $\beta r_{i}>\ln \rho\left(B_{i}\right)$ for all $1 \leq i \leq k$.

- If τ is tracial state on $C^{*}(G)$, then the series $\sum_{p \in \mathbb{N}^{k}} \sum_{\lambda \in \Lambda^{p}} e^{-\beta r \cdot p} \tau\left(i_{s(\lambda)}\right)$ converges to a positive number $Z(\beta, \tau)$, and there is a $K M S_{\beta \text {-state }} \phi_{\tau}$ of $(\mathbb{T}(G, \Lambda), \sigma)$ such that

$$
\phi_{\tau}\left(t_{\lambda} u_{g} t_{\mu}^{*}\right)=\delta_{\lambda, \mu} Z(\beta, \tau)^{-1} \sum_{p \geq d(\lambda)} e^{-\beta r \cdot p} \sum_{\left\{\nu \in s(\lambda) \Lambda^{p-d(\lambda)}: g \cdot \nu=\nu\right\}} \tau\left(i_{\left.g\right|_{\nu}}\right)
$$

- The map $\tau \mapsto \phi_{\tau}$ is an affine isomorphism of the simplex of tracial states of $C^{*}(G)$ onto the simplex of $K M S_{\beta}$-states of $(\mathbb{T}(G, \Lambda), \sigma)$.

