An introduction to (quantum) symmetries of (quantum) graphs

Matthew Daws

UCLan

BAMC, Glasgow, April 2021

Non-commutative topology

I am under obligation to provide this table:

Spaces	Algebras
Locally compact Hausdorff space	Commutative C*-algebra
Compact	Unital
(Proper) continuous map	*-Homomorphism
Cartesian Product	Tensor product

Remember that this relationship is contravariant.
How might we deal with (Compact) groups?
As the product $G \times G \rightarrow G$ and the inverse $G \rightarrow G$ and the identity $* \rightarrow G$ are continuous maps, we could specify a commutative C^{*}-algebra A, and $*$-homomorphisms

$$
A \rightarrow A \otimes A, \quad A \rightarrow A, \quad A \rightarrow \mathbb{C}
$$

satisfying appropriate axioms.

What are groups?

Definition

A group is a set G with an associative product $G \times G \rightarrow G$ such that:

- There is $e \in G$ with $e g=g e=g$ for each $g \in G$;
- For each $g \in G$ there are $h, k \in G$ with $g h=k g=e$.

So really the identity and inverse are "properties" of the semigroup G, not "structure".
It turns out that we get a (much) more interesting theory if we similarly focus on the product, and think about an extra property.

Compact Quantum groups

Definition (Woronowicz)

A compact quantum group is a unital C^{*}-algebra A together with a unital $*$-homomorphism, the coproduct, $\Delta: A \rightarrow A \otimes A$ such that:

$$
\{(a \otimes 1) \Delta(b): a, b \in A\}, \quad\{(1 \otimes a) \Delta(b): a, b \in A\}
$$

both have dense linear span in $A \otimes A$.

Theorem

Let (A, Δ) be a compact quantum group with A commutative. There is a compact group G with $A=C(G)$ and $\Delta: C(G) \rightarrow C(G) \otimes C(G)=C(G \times G)$ given by

$$
\Delta(f)(s, t)=f(s t) \quad(f \in C(G), s, t \in G)
$$

Discrete group examples

Let Γ be a discrete group, and form $C_{r}^{*}(\Gamma)$ as a concrete C^{*}-algebra of operators on $\ell^{2}(\Gamma)$ generated by the translation operators λ_{s} for $s \in \Gamma$. There is a *-homomorphism

$$
\Delta: C_{r}^{*}(\Gamma) \rightarrow C_{r}^{*}(\Gamma) \otimes C_{r}^{*}(\Gamma) ; \quad \lambda_{s} \mapsto \lambda_{s} \otimes \lambda_{s}
$$

Easy to check the density conditions; so $\left(C_{r}^{*}(\Gamma), \Delta\right)$ is a compact quantum group.
The map representing the unit "should be"

$$
\epsilon: C_{r}^{*}(\Gamma) \rightarrow \mathbb{C} ; \quad \lambda_{s} \mapsto 1
$$

This is only bounded if Γ is amenable.
More generally, we need to look at $C^{*}(\Gamma)$.

Lots of structure

Let (A, Δ) be a compact quantum group. Then A admits a "Haar state", a state $h: A \rightarrow \mathbb{C}$ which is invariant:

$$
(h \otimes \mathrm{id}) \Delta(a)=(\mathrm{id} \otimes h) \Delta(a)=h(a) 1 \quad(a \in A)
$$

The analogue of a (unitary, finite-dimensional) group representation is a corepresentation, a unitary matrix $u=\left(u_{i j}\right) \in M_{n}(A)$ with

$$
\Delta\left(u_{i j}\right)=\sum_{k=1}^{n} u_{i k} \otimes u_{k j} \quad(1 \leq i, j \leq n)
$$

(Idea: this links Δ with the "dual of matrix multiplication".) Then corepresentations split into irreducible factors, and we have an entire analogue of Peter-Weyl theory, for example.

Further examples

A magic unitary is a matrix $u=\left(u_{i j}\right) \in M_{n}(A)$ (for some unital C^{*}-algebra A) such that:

- each $u_{i j}$ is a projection: $u_{i j}=u_{i j}^{2}=u_{i j}^{*}$;
- each row and column sums to 1 , so $\sum_{k} u_{k j}=\sum_{k} u_{i k}=1$.

These imply in a given row or column, all the projections are mutually orthogonal.
Such a matrix is unitary, as e.g.

$$
\sum_{k}\left(u^{*}\right)_{i k} u_{k j}=\sum_{k} u_{k i}^{*} u_{k j}=\sum_{k} u_{k i} u_{k j}=\delta_{i j} \sum_{k} u_{k i}=\delta_{i j} 1 .
$$

Let S_{n}^{+}be the universal unital C^{*}-algebra generated by a universal magic unitary $\left(u_{i j}\right)_{i, j=1}^{n}$.
[I am deliberately confusing the algebra and the "quantum group".]

"Universal" C^{*}-algebras

"Let S_{n}^{+}be the universal unital C^{*}-algebra generated by a universal magic unitary $\left(u_{i j}\right)_{i, j=1}^{n}$."

- We could take all possible (up to some cardinality) C^{*}-algebras A with a magic unitary $u=\left(u_{i j}\right) \in M_{n}(A)$ such that the entries $u_{i j}$ generate A. Then take the direct sum.
- Or consider the $*$-algebra with generators $\left(u_{i j}\right)$ and relations, and take the enveloping C^{*}-algebra.
- Notice that $\left\|u_{i j}\right\|=1$ always!
- These constructions are the same.
- Not clear to me what S_{n}^{+}actually is!

Abelianisation

$$
u_{i j}=u_{i j}^{2}=u_{i j}^{*}, \quad \sum_{k} u_{i k}=\sum_{k} u_{k j}=1
$$

Let $\phi: S_{n}^{+} \rightarrow \mathbb{C}$ be a character. Then:

- $\phi(e) \in\{0,1\}$ for any projection e; and $\phi(1)=1$;

So the scalar matrix $\left(\phi\left(u_{i j}\right)\right)$ is 0,1 -valued, and each row and column sums to 1 .

- So $\left(\phi\left(u_{i j}\right)\right)$ is a permutation matrix!

So as ϕ varies, we see that we obtain $C\left(S_{n}\right)$, which is hence the abelianisation of S_{n}^{+}.

- $C\left(S_{n}\right)$ is hence what you get if we also require each generator $u_{i j}$ to commute.
- S_{n}^{+}is a liberation of S_{n}.

As a quantum group

The elements $v_{i j}:=\sum_{k=1}^{n} u_{i k} \otimes u_{k j} \in S_{n}^{+} \otimes S_{n}^{+}$are also projections, which satisfy the row/column relations. So by universality, there is a *-homomorphism

$$
\Delta: S_{n}^{+} \rightarrow S_{n}^{+} \otimes S_{n}^{+} ; \quad u_{i j} \mapsto \sum_{k=1}^{n} u_{i k} \otimes u_{k j}
$$

- Easy to see that Δ is coassociative.
- As the matrix $\left(u_{i j}\right)$ is unitary and each $u_{i j}$ is self-adjoint, one can check that the density conditions hold. [Though this is a bit of work.]
So $\left(S_{n}^{+}, \Delta\right)$ is a compact quantum group: the "quantum symmetry group."

But what is it "symmetries" of?

Quantum group (co)actions

An (right) action of a group G on a space/set X is a map

$$
X \times G \rightarrow X
$$

So we get

$$
\alpha: C(X) \rightarrow C(X) \otimes C(G)
$$

- $(\mathrm{id} \otimes \Delta) \alpha=(\alpha \otimes \mathrm{id}) \alpha$ corresponds to $x \cdot s t=(x \cdot s) \cdot t$;
- $\operatorname{lin}\{\alpha(b)(1 \otimes a): a \in C(G), b \in C(X)\}$ is dense in $C(X) \otimes C(G)$ corresponds to $x \cdot e=x$.

Definition (Podleś)

A (right) coaction of a compact quantum group (A, Δ) on a C^{*}-algebra B is a unital $*$-homomorphism $\alpha: B \rightarrow B \otimes A$ with these two conditions.

Coactions on \mathbb{C}^{n}

Fix a compact quantum group (A, Δ).

- The algebra \mathbb{C}^{n} is spanned by projections $\left(e_{i}\right)_{i=1}^{n}$.
- So $\alpha: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \otimes A$ is determined by $\left(u_{i j}\right)$ in A with

$$
\alpha\left(e_{i}\right)=\sum_{j=1}^{n} e_{j} \otimes u_{j i}
$$

- α is a $*$-homomorphism \Leftrightarrow each $u_{j i}$ a projection and $u_{j i} u_{j k}=\delta_{i k} u_{j i}$;
- α is unital $\Leftrightarrow \sum_{i} u_{j i}=1$;
- α satisfies the coaction equation $\Leftrightarrow \Delta\left(u_{j i}\right)=\sum_{k} u_{j k} \otimes u_{k i}$;
- α satisfies the Podleś density condition $\Leftrightarrow \sum_{i} u_{j i}=1$.
- General Theory $\Longrightarrow \sum_{j} u_{j i}=1$. So $\left(u_{i j}\right)$ is a magic unitary.

Quantum symmetry group of the space of n points

For $\mathbb{C}^{n}=C(\{1,2, \cdots, n\})$,

$$
\alpha\left(e_{i}\right)=\sum_{j=1}^{n} e_{j} \otimes u_{j i}
$$

with $u=\left(u_{i j}\right)$ a magic unitary.

- So there is a quantum group morphism $S_{n}^{+} \rightarrow A$.

```
Theorem (Wang)
Sn
"non-degenerate" way.
```

We think of S_{n}^{+}as the "quantum symmetry group" of $\{1,2, \cdots, n\}$.

More structure: graphs

Consider a (simple, undirected) graph G on vertex set $V=\{1,2, \cdots, n\}$. The adjacency matrix is $A=A_{G}$ a 0,1 -valued matrix with $A_{i j}=1$ if and only if there is an edge between vertices i and j.

So A is symmetric, and if we do not allow loops, then A has 0 on the diagonal.

Automorphisms of graphs

What is a "symmetry" of a graph?

- A permutation of the underlying vertex set;
- which preserves the proper of vertices being neighbours, or not.

Let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be the linear map induced by the adjacency matrix.
So

$$
T\left(e_{i}\right)=\sum_{j} A_{j i} e_{j}=\sum_{i \sim j} e_{j}
$$

where $i \sim j$ when i is adjacent to j.

- Thus an automorphism of a graph is a permutation $\sigma \in S_{n}$ with

$$
T U_{\sigma}\left(e_{i}\right)=U_{\sigma} T\left(e_{i}\right) \quad(1 \leq i \leq n)
$$

where $U_{\sigma}: e_{i} \mapsto e_{\sigma(i)}$.

(Co)actions on graphs

$$
T U_{\sigma}=U_{\sigma} T
$$

- So $\operatorname{Aut}(G)$ acts in a way which preserves T :

$$
\alpha: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \otimes C(\operatorname{Aut}(G)) ; \quad \alpha T=(T \otimes \mathrm{id}) \alpha
$$

Definition (Banica)

The quantum automorphism group of G is the maximal compact quantum group $\operatorname{QAut}(G)$ with a coaction satisfying

$$
\alpha: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \otimes \operatorname{QAut}(G) ; \quad \alpha T=(T \otimes \mathrm{id}) \alpha
$$

Equivalently, the underlying magic unitary $U=\left(u_{i j}\right)$ has to commute with the adjacency matrix A.

Some examples

- When $n \leq 3$ we have that $S_{n}^{+}=C\left(S_{n}\right)$.
- For $n \geq 4$ we know that S_{n}^{+}is infinite-dimensional:

$$
\left(\begin{array}{cccc}
p & 1-p & 0 & 0 \\
1-p & p & 0 & 0 \\
0 & 0 & q & 1-q \\
0 & 0 & 1-q & 1
\end{array}\right)
$$

- S_{4}^{+}is nuclear; S_{n}^{+}is non-nuclear for $n \geq 5$ [Banica]
- Let $C\left(S_{n}^{+}\right)$be the image of S_{n}^{+}acting on the GNS space for the Haar state. Then $C\left(S_{n}^{+}\right)$is simple with unique trace, when $n \geq 8$.
[Brannan]

Graph Laplacian?

For graphs, the structure of G matters, except when G is the complete graph.

But why look at the adjacency matrix?
Consider

$$
A_{i j}^{2}=\sum_{k} A_{i k} A_{k j}=|\{k: i \sim k, j \sim k\}| .
$$

- In particular, $A_{i i}^{2}$ is the degree of i. Some work then shows that if $\operatorname{deg}(i) \neq \operatorname{deg}(j)$ then $u_{i j}=0$ [Fulton].
- Thus if D is the degree matrix, $D=\operatorname{diag}(\operatorname{deg}(i))$, then $D u=u D$.
- So also $L u=u L$ where $L=D-A$ is the graph Laplacian.

Graph Laplacian: converse

Suppose u is a magic unitary with $L u=u L$. Then

$$
(u L)_{i j}=\operatorname{deg}(j) u_{i j}-\sum_{k \sim j} u_{i k}, \quad(L u)_{i j}=\operatorname{deg}(i) u_{i j}-\sum_{i \sim k} u_{k j} .
$$

These agree, so multiply by $u_{i j}$ to get

$$
\operatorname{deg}(j) u_{i j}-\sum_{k \sim j} u_{i j} u_{i k}=\operatorname{deg}(i) u_{i j}-\sum_{k \sim i} u_{i j} u_{k j}
$$

As $u_{i j} u_{i k}=\delta_{j, k} u_{i j}$ and $u_{i j} u_{k j}=\delta_{i k} u_{i j}$, we see

- If $i \sim j$ (so $j \sim i$) then $(\operatorname{deg}(j)-1) u_{i j}=(\operatorname{deg}(i)-1) u_{i j}$;
- Otherwise $\operatorname{deg}(j) u_{i j}=\operatorname{deg}(i) u_{i j}$;
- In either case, $\operatorname{deg}(i) \neq \operatorname{deg}(j) \Longrightarrow u_{i j}=0$.
- So $D u=u D$ and hence $A u=u A$ as $L=D-A$.
[With thanks to Simon Schmidt.]

Examples continued

Question

What other matrices / operators associated to G would give the same definition of QAut (G) ?

We say that a graph has quantum symmetry if $\operatorname{Aut}(G) \neq \operatorname{QAut}(G)$.

- By now, we have many examples.
- For example, the Petersen graph has no quantum symmetry [Schmidt].

[CC-BY-SA, Leshabirukov, Wikipedia]
- The next talk will say more!

