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The group von Neumann algebra

Let Γ be a locally compact group. For s ∈ Γ, define the left translation

operator λs : L
2(Γ) → L2(Γ) by λsξ(t) = ξ(s−1t).

The group von Neumann algebra VN(Γ) is the SOT-closed algebra

generated by {λs | s ∈ Γ} inside B(L2(Γ)).
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The group von Neumann algebra

Let Γ be a locally compact group. For s ∈ Γ, define the left translation

operator λs : L
2(Γ) → L2(Γ) by λsξ(t) = ξ(s−1t).

The group von Neumann algebra VN(Γ) is the SOT-closed algebra

generated by {λs | s ∈ Γ} inside B(L2(Γ)).

The group von Neumann algebra as a commutant

Let a ∈ B(L2(Γ)) where Γ is unimodular (e.g. compact, abelian or

discrete). Then a ∈ VN(Γ) iff it commutes with every right translation

operator on L2(Γ).

Example 1. VN(Z) is the set of all a ∈ B(ℓ2(Z)) satisfying

aij = ai+k,j+k for all i, j, k ∈ Z.
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The predual

For φ ∈ VN(Γ)∗ let evφ(s) = φ(λs). Then evφ ∈ C0(Γ).

Since φ 7→ evφ is linear and injective we can identify VN(Γ)∗ with a

linear subspace of C0(Γ); this is the Fourier algebra A(Γ).
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The predual

For φ ∈ VN(Γ)∗ let evφ(s) = φ(λs). Then evφ ∈ C0(Γ).

Since φ 7→ evφ is linear and injective we can identify VN(Γ)∗ with a

linear subspace of C0(Γ); this is the Fourier algebra A(Γ).

The LCA case

If Γ is loc. compact abelian, with dual group G = Γ̂, then the Fourier

transform L2(Γ) ∼= L2(G) induces isomorphisms VN(Γ) ∼= L∞(G) and

A(Γ) ∼= L1(G).

Convolution in L1(G) corresponds to pointwise multiplication in A(Γ)
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The action of the predual

For general Γ: A(Γ) is still an algebra with respect to pointwise

multiplication; thus it acts on VN(Γ) = A(Γ)∗, via:

〈x • evφ, evψ〉VN(Γ)−A(Γ) = 〈x, evφ · evψ〉VN(Γ)−A(Γ)

or, by slight abuse of notation, 〈x • φ, ψ〉 = 〈x, φ · ψ〉.
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The action of the predual

For general Γ: A(Γ) is still an algebra with respect to pointwise

multiplication; thus it acts on VN(Γ) = A(Γ)∗, via:

〈x • evφ, evψ〉VN(Γ)−A(Γ) = 〈x, evφ · evψ〉VN(Γ)−A(Γ)

or, by slight abuse of notation, 〈x • φ, ψ〉 = 〈x, φ · ψ〉.

Example 2. If a ∈ VN(Z) and φ ∈ A(Z) then (a • φ)ij = aijφ(i− j).

Remark

If Γ is discrete and we view elements of VN(Γ) as infinite matrices, then

A(Γ) acts on VN(Γ) by (a version of) Schur multiplication.
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Almost periodic elements

Since VN(Γ)∗ is an algebra acting on VN(Γ), for each x ∈ VN(Γ) we

get an orbit map for this action:

Lx : VN(Γ)∗ → VN(Γ) , φ 7→ x • φ

Definition (Dunkl–Ramirez (1973))

AP(Γ̂) := {x ∈ VN(Γ) | Lx : VN(Γ)∗ → VN(Γ) is compact}

This space has been studied by various authors (Granirer, 1974; Lau,

1977; Chou, 1990) in the context of abstract harmonic analysis. But

where does it come from?
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Motivation: the “classical” setting

Let G be a group and let f ∈ ℓ∞(G). We say that f is almost periodic if

the set of left translates of f is a totally bounded subset of ℓ∞(G).

Example 3. For any α1, . . . , αn ∈ R and any c1, . . . , cn ∈ C, the

function

f(t) = c1e
iα1t + · · ·+ cne

iαnt

is almost periodic on R.
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Motivation: the “classical” setting

Let G be a group and let f ∈ ℓ∞(G). We say that f is almost periodic if

the set of left translates of f is a totally bounded subset of ℓ∞(G).

Example 3. For any α1, . . . , αn ∈ R and any c1, . . . , cn ∈ C, the

function

f(t) = c1e
iα1t + · · ·+ cne

iαnt

is almost periodic on R.

When G is locally compact, the a.p. elements of L∞(G) admit a simple

operator-theoretic characterization.

Recall: L1(G) is an algebra (with convolution as the product); so it has a

natural right action on L1(G)∗ = L∞(G), which we denote by • .
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Theorem (various sources, 1930s–1970s)

Let f ∈ L∞(G). TFAE:

1 f is (equal a.e. to) a bounded a.p. function;

2 f ∈ Cb(G) and {f • µ | µ ∈ Prob(G)} is totally bounded;

3 Lf : L1(G) → L∞(G), µ 7→ f • µ, is a compact operator.
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Theorem (various sources, 1930s–1970s)

Let f ∈ L∞(G). TFAE:

1 f is (equal a.e. to) a bounded a.p. function;

2 f ∈ Cb(G) and {f • µ | µ ∈ Prob(G)} is totally bounded;

3 Lf : L1(G) → L∞(G), µ 7→ f • µ, is a compact operator.

The proof uses the existence of a b.a.i. in L1(G) and various topologies

on L∞(G) and M(G). The full details are rather technical.

One part is easy: if Lf : L1(G) → L∞(G)) is compact, then f ∈ Cb(G).

Idea of the proof

Take a b.a.i. (µi) in L
1(G); then f • µi ∈ Cb(G) and f = w∗limi f • µi.

But some subnet of (f • µi) converges in norm.

6 / 16



Returning to the dual version

A reminder of the D–R definition

AP(Γ̂) := {x ∈ VN(Γ) | Lx : VN(Γ)∗ → VN(Γ) is compact}

If Γ is abelian this is the space of continuous a.p. functions on Γ̂.

Note that if x = λs then Lx(φ) = φ(x)x. Hence

C∗

δ(Γ) := lin{λs | s ∈ Γ} ⊆ AP(Γ̂)
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A reminder of the D–R definition

AP(Γ̂) := {x ∈ VN(Γ) | Lx : VN(Γ)∗ → VN(Γ) is compact}

If Γ is abelian this is the space of continuous a.p. functions on Γ̂.

Note that if x = λs then Lx(φ) = φ(x)x. Hence

C∗

δ(Γ) := lin{λs | s ∈ Γ} ⊆ AP(Γ̂)

When Γ is discrete C∗

δ(Γ) = C∗

r(Γ). Granirer (1974) observed that if

Γ is discrete and amenable, then AP(Γ̂) = C∗

r(Γ).

Idea of the proof

Take a b.a.i. (φi) in A(Γ); then x • φi ∈ C∗

r(Γ) and x = w∗limi x • φi.

But some subnet of (x • φi) converges in norm.
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Properties and problems

One serious problem is the following gap in our knowledge:

Question.

Is AP(Γ̂) is a C∗-subalgebra of VN(Γ)?

No counterexamples are known, but the question is open even for Γ = F2

or Γ = SU(2)!
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Properties and problems

One serious problem is the following gap in our knowledge:

Question.

Is AP(Γ̂) is a C∗-subalgebra of VN(Γ)?

No counterexamples are known, but the question is open even for Γ = F2

or Γ = SU(2)! The best result to date is:

Theorem (Chou, 1990)

Let Γ be amenable and have an open abelian subgroup. Then

AP(Γ) = C∗

δ(Γ̂); in particular it is a C∗-algebra.

By results of Chou (1990) and Rindler (1992) there are compact

(profinite) groups Γ such that the inclusion C∗

δ(Γ) ⊆ AP(Γ̂) is proper.
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Compactness for maps between operator spaces

Definition (Oikhberg, PhD thesis, 1998)

Given operator spaces V and W and f ∈ CB(V,W ), we say f is Gelfand

completely compact (g.c.c.) if:

for all ε > 0 there exists a closed subspace E ⊂ V with dim(V/E) <∞,

such that

‖E →֒ V →W‖cb < ε.
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Compactness for maps between operator spaces

Definition (Oikhberg, PhD thesis, 1998)

Given operator spaces V and W and f ∈ CB(V,W ), we say f is Gelfand

completely compact (g.c.c.) if:

for all ε > 0 there exists a closed subspace E ⊂ V with dim(V/E) <∞,

such that

‖E →֒ V →W‖cb < ε.

If we replace the cb-norm with the “usual norm” of B(V,W ) we recover

the usual class of compact operators. In particular:

every g.c.c. map V →W is compact in the usual sense;

if W = L∞(G) then every compact map V →W is g.c.c.
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Completely almost periodic elements

Definition (Reformulation of Runde, 2011)

CAP(Γ̂) := {x ∈ VN(Γ) | Lx : VN(Γ)∗ → VN(Γ) is g.c.c.}

Remarks for the specialists

1 Runde (2011) gives a definition that works for all Hopf–von

Neumann algebras (M,∆); when applied to (L∞(G), ∆̂) it recovers

the classical space AP(G).

2 Our formulation is cheating slightly by exploiting the fact that

(VN(Γ),∆) is co-commutative; for general (M,∆) we need to add a

corresponding condition on Rx : M∗ → M.

3 Runde’s original definition used a different version of operator-space

compactness, called (Saar) complete compactness.
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Describing the action using comultiplication

There is a normal, unital ∗-homomorphism ∆ : VN(Γ) → VN(Γ× Γ)

satisfying

∆λs = λs ⊗ λs (s ∈ Γ)
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Describing the action using comultiplication

There is a normal, unital ∗-homomorphism ∆ : VN(Γ) → VN(Γ× Γ)

satisfying

∆λs = λs ⊗ λs (s ∈ Γ)

The product on VN(Γ)∗ = A(Γ) can be recovered via:

(φ · ψ)(x) = (φ⊗ ψ)∆x (φ, ψ ∈ VN(Γ)∗ ;x ∈ VN(Γ))

Hence the orbit map Lx : VN(Γ)∗ → VN(Γ) is given by:

Lx(φ) = x • φ = (φ⊗ ι)∆x
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À la recherche d’une C∗

-algèbre

For von Neumann algebras M and N we have CB(M∗,N) = M⊗N:

w ∈ M⊗N corresponds to φ 7→ (φ⊗ ι)(w)

Moreover: if N is injective, the g.c.c. maps correspond to M⊗min N.
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À la recherche d’une C∗

-algèbre

For von Neumann algebras M and N we have CB(M∗,N) = M⊗N:

w ∈ M⊗N corresponds to φ 7→ (φ⊗ ι)(w)

Moreover: if N is injective, the g.c.c. maps correspond to M⊗min N.

Theorem (Runde, 2011)

Suppose that VN(Γ) is injective (e.g. Γ amenable or connected). Then

CAP(Γ̂) = {x ∈ VN(Γ) | ∆x ∈ VN(Γ)⊗min VN(Γ)}

In particular, since ∆ is a unital ∗-homomorphism, CAP(Γ̂) is a unital

C∗-subalgebra of VN(Γ).
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Removing the injectivity assumption

Lemma

Let V,W be operator spaces, let f ∈ CB(V,W ), and let ι :W → N be a

complete isometry where N is injective. Then

f : V →W is g.c.c. ⇐⇒ ιf : V → N is g.c.c. ⇐⇒ ιf ∈ V ∗ ⊗min N
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Removing the injectivity assumption

Lemma

Let V,W be operator spaces, let f ∈ CB(V,W ), and let ι :W → N be a

complete isometry where N is injective. Then

f : V →W is g.c.c. ⇐⇒ ιf : V → N is g.c.c. ⇐⇒ ιf ∈ V ∗ ⊗min N

Theorem (C., in preparation)

CAP(Γ̂) = {x ∈ VN(Γ) | ∆x ∈ VN(Γ)⊗min B(ℓ2(Γ))}

In particular CAP(Γ̂) is a unital C∗-subalgebra of VN(Γ).

Ongoing project

Revisit the results of Chou (1990) using CAP(Γ̂) instead of AP(Γ̂).

13 / 16



1 Initial definitions

2 Motivation from abstract harmonic analysis

3 Introducing operator space structure

4 The discrete case

13 / 16



Results for discrete groups

For the rest of this talk we focus on the case where Γ is discrete. In this

case we have C∗

r(Γ) ≡ C∗

δ(Γ) ⊆ CAP(Γ̂) and the question is: do we

always have equality?
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Results for discrete groups

For the rest of this talk we focus on the case where Γ is discrete. In this

case we have C∗

r(Γ) ≡ C∗

δ(Γ) ⊆ CAP(Γ̂) and the question is: do we

always have equality?

We say a ∈ B(ℓ2(Γ)) has finite bandwidth if there is a finite subset

F ⊂ Γ such that as,t 6= 0 =⇒ st−1 ∈ F . The norm-closure of the set of

finite-bandwidth operators is denoted by UC∗

r(Γ).

Lemma

Let ⋄ denote the Schur product of operators on ℓ2(Γ). If a ∈ VN(Γ) and

b ∈ B(ℓ2(Γ)) then a ⋄ b ∈ UC∗

r(Γ).

CAP(Γ̂) = {x ∈ VN(Γ) | ∆x ∈ VN(Γ)⊗min B(ℓ2(Γ))}.
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Using the description of ∆ in terms of the fundamental unitary for

VN(Γ), we can construct ∇ : B(ℓ2(Γ× Γ)) → B(Γ) such that

∇∆(x) = x for all x ∈ VN(Γ);

∇(a⊗ b) = a ⋄ b for all a, b ∈ B(ℓ2(Γ)).
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Using the description of ∆ in terms of the fundamental unitary for

VN(Γ), we can construct ∇ : B(ℓ2(Γ× Γ)) → B(Γ) such that

∇∆(x) = x for all x ∈ VN(Γ);

∇(a⊗ b) = a ⋄ b for all a, b ∈ B(ℓ2(Γ)).

Theorem (C.)

Let x ∈ B(ℓ2(Γ)). TFAE:

1 x ∈ CAP(Γ̂)

2 x ∈ VN(Γ) ∩UC∗

r(Γ)

3 x ∈ VN(Γ) and ∆x ∈ C∗

r(Γ)⊗min UC∗

r(Γ).
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Discrete groups for which C∗

r(Γ) = VN(Γ) ∩UC∗

r(Γ) are said to have the

invariant translation approximation property (ITAP).

No examples are known to fail ITAP; the case of SL3(Z) remains open!
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Discrete groups for which C∗

r(Γ) = VN(Γ) ∩UC∗

r(Γ) are said to have the

invariant translation approximation property (ITAP).

No examples are known to fail ITAP; the case of SL3(Z) remains open!

Every discrete group with the approximation property has the ITAP

(Zacharias, 2006). Hence if Γ is such a group, we have

CAP(Γ̂) = C∗

r(Γ). This includes: free groups; Z2 ⋊ SL2(Z).

On the other hand: if Γ does not have ITAP, then C∗

r(Γ) ( CAP(Γ̂) and

therefore C∗

r(Γ) ( AP(Γ̂).
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