Completely almost periodic elements of group von Neumann algebras

Yemon Choi Lancaster University

BMC/BAMC Glasgow 2021 Operator Algebras session 6th April 2021

2 Motivation from abstract harmonic analysis

3 Introducing operator space structure

2 Motivation from abstract harmonic analysis

Introducing operator space structure

Let Γ be a locally compact group. For $s \in \Gamma$, define the left translation operator $\lambda_s : L^2(\Gamma) \to L^2(\Gamma)$ by $\lambda_s \xi(t) = \xi(s^{-1}t)$.

The group von Neumann algebra $VN(\Gamma)$ is the SOT-closed algebra generated by $\{\lambda_s \mid s \in \Gamma\}$ inside $\mathcal{B}(L^2(\Gamma))$.

Let Γ be a locally compact group. For $s \in \Gamma$, define the left translation operator $\lambda_s : L^2(\Gamma) \to L^2(\Gamma)$ by $\lambda_s \xi(t) = \xi(s^{-1}t)$.

The group von Neumann algebra $VN(\Gamma)$ is the SOT-closed algebra generated by $\{\lambda_s \mid s \in \Gamma\}$ inside $\mathcal{B}(L^2(\Gamma))$.

The group von Neumann algebra as a commutant

Let $a \in \mathcal{B}(L^2(\Gamma))$ where Γ is unimodular (e.g. compact, abelian or discrete). Then $a \in VN(\Gamma)$ iff it commutes with every **right** translation operator on $L^2(\Gamma)$.

Example 1. $VN(\mathbb{Z})$ is the set of all $a \in \mathcal{B}(\ell^2(\mathbb{Z}))$ satisfying

 $a_{ij} = a_{i+k,j+k}$ for all $i, j, k \in \mathbb{Z}$.

For $\phi \in VN(\Gamma)_*$ let $ev_{\phi}(s) = \phi(\lambda_s)$. Then $ev_{\phi} \in C_0(\Gamma)$.

Since $\phi \mapsto ev_{\phi}$ is linear and injective we can identify $VN(\Gamma)_*$ with a linear subspace of $C_0(\Gamma)$; this is the Fourier algebra $A(\Gamma)$.

For $\phi \in VN(\Gamma)_*$ let $ev_{\phi}(s) = \phi(\lambda_s)$. Then $ev_{\phi} \in C_0(\Gamma)$.

Since $\phi \mapsto ev_{\phi}$ is linear and injective we can identify $VN(\Gamma)_*$ with a linear subspace of $C_0(\Gamma)$; this is the Fourier algebra $A(\Gamma)$.

The LCA case

If Γ is loc. compact abelian, with dual group $G = \widehat{\Gamma}$, then the Fourier transform $L^2(\Gamma) \cong L^2(G)$ induces isomorphisms $VN(\Gamma) \cong L^{\infty}(G)$ and $A(\Gamma) \cong L^1(G)$.

Convolution in $L^1(G)$ corresponds to pointwise multiplication in $A(\Gamma)$

For general Γ : $A(\Gamma)$ is still an algebra with respect to pointwise multiplication; thus it acts on $VN(\Gamma) = A(\Gamma)^*$, via:

$$\langle x \bullet \mathrm{ev}_{\phi}, \mathrm{ev}_{\psi} \rangle_{\mathrm{VN}(\Gamma) - \mathrm{A}(\Gamma)} = \langle x, \mathrm{ev}_{\phi} \cdot \mathrm{ev}_{\psi} \rangle_{\mathrm{VN}(\Gamma) - \mathrm{A}(\Gamma)}$$

or, by slight abuse of notation, $\langle x \bullet \phi, \psi \rangle = \langle x, \phi \cdot \psi \rangle$.

For general Γ : $A(\Gamma)$ is still an algebra with respect to pointwise multiplication; thus it acts on $VN(\Gamma) = A(\Gamma)^*$, via:

$$\langle x \bullet \mathrm{ev}_{\phi}, \mathrm{ev}_{\psi} \rangle_{\mathrm{VN}(\Gamma) - \mathrm{A}(\Gamma)} = \langle x, \mathrm{ev}_{\phi} \cdot \mathrm{ev}_{\psi} \rangle_{\mathrm{VN}(\Gamma) - \mathrm{A}(\Gamma)}$$

or, by slight abuse of notation, $\langle x \bullet \phi, \psi \rangle = \langle x, \phi \cdot \psi \rangle.$

Example 2. If $a \in VN(\mathbb{Z})$ and $\phi \in A(\mathbb{Z})$ then $(a \bullet \phi)_{ij} = a_{ij}\phi(i-j)$.

Remark

If Γ is discrete and we view elements of $VN(\Gamma)$ as infinite matrices, then $A(\Gamma)$ acts on $VN(\Gamma)$ by (a version of) Schur multiplication.

Since $VN(\Gamma)_*$ is an algebra acting on $VN(\Gamma)$, for each $x \in VN(\Gamma)$ we get an orbit map for this action:

$$L_x: \mathrm{VN}(\Gamma)_* \to \mathrm{VN}(\Gamma) \quad , \quad \phi \mapsto x \bullet \phi$$

Definition (DUNKL-RAMIREZ (1973))

 $\operatorname{AP}(\widehat{\Gamma}) := \{ x \in \operatorname{VN}(\Gamma) \mid L_x : \operatorname{VN}(\Gamma)_* \to \operatorname{VN}(\Gamma) \text{ is compact} \}$

This space has been studied by various authors (GRANIRER, 1974; LAU, 1977; CHOU, 1990) in the context of abstract harmonic analysis. But where does it come from?

2 Motivation from abstract harmonic analysis

Let G be a group and let $f \in \ell^{\infty}(G)$. We say that f is almost periodic if the set of left translates of f is a totally bounded subset of $\ell^{\infty}(G)$.

Example 3. For any $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and any $c_1, \ldots, c_n \in \mathbb{C}$, the function

$$f(t) = c_1 e^{i\alpha_1 t} + \dots + c_n e^{i\alpha_n t}$$

is almost periodic on \mathbb{R} .

Let G be a group and let $f \in \ell^{\infty}(G)$. We say that f is almost periodic if the set of left translates of f is a totally bounded subset of $\ell^{\infty}(G)$.

Example 3. For any $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and any $c_1, \ldots, c_n \in \mathbb{C}$, the function

$$f(t) = c_1 e^{i\alpha_1 t} + \dots + c_n e^{i\alpha_n t}$$

is almost periodic on \mathbb{R} .

When G is locally compact, the a.p. elements of $L^{\infty}(G)$ admit a simple operator-theoretic characterization.

Recall: $L^1(G)$ is an algebra (with convolution as the product); so it has a natural right action on $L^1(G)^* = L^{\infty}(G)$, which we denote by \bullet .

Theorem (various sources, 1930s–1970s)

Let $f \in L^{\infty}(G)$. TFAE:

- *f* is (equal a.e. to) a bounded a.p. function;
- $f \in C_b(G)$ and $\{f \bullet \mu \mid \mu \in \operatorname{Prob}(G)\}$ is totally bounded;
- $L_f: L^1(G) \to L^{\infty}(G), \ \mu \mapsto f \bullet \mu$, is a compact operator.

Theorem (various sources, 1930s–1970s)

Let $f \in L^{\infty}(G)$. TFAE:

f is (equal a.e. to) a bounded a.p. function;

• $f \in C_b(G)$ and $\{f \bullet \mu \mid \mu \in \operatorname{Prob}(G)\}$ is totally bounded;

• $L_f: L^1(G) \to L^{\infty}(G), \ \mu \mapsto f \bullet \mu$, is a compact operator.

The proof uses the existence of a b.a.i. in $L^1(G)$ and various topologies on $L^{\infty}(G)$ and M(G). The full details are rather technical.

One part is easy: if $L_f : L^1(G) \to L^{\infty}(G)$ is compact, then $f \in C_b(G)$.

Idea of the proof

Take a b.a.i. (μ_i) in $L^1(G)$; then $f \bullet \mu_i \in C_b(G)$ and $f = w^* \lim_i f \bullet \mu_i$. But some subnet of $(f \bullet \mu_i)$ converges in norm.

A reminder of the D-R definition

 $\operatorname{AP}(\widehat{\Gamma}) := \{ x \in \operatorname{VN}(\Gamma) \mid L_x : \operatorname{VN}(\Gamma)_* \to \operatorname{VN}(\Gamma) \text{ is compact} \}$

If Γ is abelian this is the space of continuous a.p. functions on $\widehat{\Gamma}$.

Note that if $x = \lambda_s$ then $L_x(\phi) = \phi(x)x$. Hence

$$\mathcal{C}^*_{\delta}(\Gamma) := \overline{\lim} \{ \lambda_s \mid s \in \Gamma \} \subseteq \operatorname{AP}(\widehat{\Gamma})$$

A reminder of the D-R definition

 $\operatorname{AP}(\widehat{\Gamma}) := \{ x \in \operatorname{VN}(\Gamma) \mid L_x : \operatorname{VN}(\Gamma)_* \to \operatorname{VN}(\Gamma) \text{ is compact} \}$

If Γ is abelian this is the space of continuous a.p. functions on $\widehat{\Gamma}$.

Note that if $x = \lambda_s$ then $L_x(\phi) = \phi(x)x$. Hence

$$C^*_{\delta}(\Gamma) := \overline{\lim} \{\lambda_s \mid s \in \Gamma\} \subseteq \operatorname{AP}(\widehat{\Gamma})$$

When Γ is discrete $C^*_{\delta}(\Gamma) = C^*_r(\Gamma)$. GRANIRER (1974) observed that if Γ is discrete and amenable, then $AP(\widehat{\Gamma}) = C^*_r(\Gamma)$.

Idea of the proof

Take a b.a.i. (ϕ_i) in $A(\Gamma)$; then $x \bullet \phi_i \in C_r^*(\Gamma)$ and $x = w^* \lim_i x \bullet \phi_i$. But some subnet of $(x \bullet \phi_i)$ converges in norm. One serious problem is the following gap in our knowledge:

Question. Is $AP(\widehat{\Gamma})$ is a C^{*}-subalgebra of $VN(\Gamma)$?

No counterexamples are known, but the question is open even for $\Gamma=\mathbb{F}_2$ or $\Gamma=SU(2)!$

One serious problem is the following gap in our knowledge:

Question. Is $AP(\widehat{\Gamma})$ is a C^{*}-subalgebra of $VN(\Gamma)$?

No counterexamples are known, but the question is open even for $\Gamma = \mathbb{F}_2$ or $\Gamma = SU(2)!$ The best result to date is:

Theorem (CHOU, 1990)

Let Γ be amenable and have an open abelian subgroup. Then $AP(\Gamma) = C^*_{\delta}(\widehat{\Gamma})$; in particular it is a C^* -algebra.

By results of CHOU (1990) and RINDLER (1992) there are compact (profinite) groups Γ such that the inclusion $C^*_{\delta}(\Gamma) \subseteq AP(\widehat{\Gamma})$ is proper.

Definition (OIKHBERG, PhD thesis, 1998)

Given operator spaces V and W and $f \in CB(V, W)$, we say f is Gelfand completely compact (g.c.c.) if:

for all $\varepsilon > 0$ there exists a closed subspace $E \subset V$ with $\dim(V/E) < \infty$, such that

 $||E \hookrightarrow V \to W||_{cb} < \varepsilon.$

Definition (OIKHBERG, PhD thesis, 1998)

Given operator spaces V and W and $f \in CB(V, W)$, we say f is Gelfand completely compact (g.c.c.) if:

for all $\varepsilon > 0$ there exists a closed subspace $E \subset V$ with $\dim(V/E) < \infty$, such that

$$\|E \hookrightarrow V \to W\|_{cb} < \varepsilon.$$

If we replace the cb-norm with the "usual norm" of $\mathcal{B}(V,W)$ we recover the usual class of compact operators. In particular:

- every g.c.c. map $V \rightarrow W$ is compact in the usual sense;
- if $W = L^{\infty}(G)$ then every compact map $V \to W$ is g.c.c.

Definition (Reformulation of RUNDE, 2011)

 $\operatorname{CAP}(\widehat{\Gamma}) := \{ x \in \operatorname{VN}(\Gamma) \mid L_x : \operatorname{VN}(\Gamma)_* \to \operatorname{VN}(\Gamma) \text{ is g.c.c.} \}$

Remarks for the specialists

- RUNDE (2011) gives a definition that works for all Hopf-von Neumann algebras (M, Δ); when applied to (L[∞](G), Â) it recovers the classical space AP(G).
- Our formulation is cheating slightly by exploiting the fact that $(VN(\Gamma), \Delta)$ is co-commutative; for general (M, Δ) we need to add a corresponding condition on $R_x : M_* \to M$.
- Runde's original definition used a different version of operator-space compactness, called (Saar) complete compactness.

There is a normal, unital *-homomorphism $\Delta: VN(\Gamma) \to VN(\Gamma \times \Gamma)$ satisfying

$$\Delta \lambda_s = \lambda_s \otimes \lambda_s \qquad (s \in \Gamma)$$

There is a normal, unital *-homomorphism $\Delta: VN(\Gamma) \to VN(\Gamma \times \Gamma)$ satisfying

$$\Delta \lambda_s = \lambda_s \otimes \lambda_s \qquad (s \in \Gamma)$$

The product on $VN(\Gamma)_* = A(\Gamma)$ can be recovered via:

$$(\phi \cdot \psi)(x) = (\phi \otimes \psi)\Delta x \qquad (\phi, \psi \in \text{VN}(\Gamma)_* ; x \in \text{VN}(\Gamma))$$

Hence the orbit map $L_x : VN(\Gamma)_* \to VN(\Gamma)$ is given by:

$$L_x(\phi) = x \bullet \phi = (\phi \otimes \iota) \Delta x$$

For von Neumann algebras M and N we have $\mathcal{CB}(M_*, N) = M\overline{\otimes}N$:

$$w \in \mathsf{M} \overline{\otimes} \mathsf{N}$$
 corresponds to $\phi \mapsto (\phi \otimes \iota)(w)$

Moreover: if N is **injective**, the g.c.c. maps correspond to $M \otimes_{\min} N$.

For von Neumann algebras M and N we have $\mathcal{CB}(M_*,N)=M\overline{\otimes}N:$

$$w \in \mathsf{M}\overline{\otimes}\mathsf{N}$$
 corresponds to $\phi \mapsto (\phi \otimes \iota)(w)$

Moreover: if N is **injective**, the g.c.c. maps correspond to $M \otimes_{\min} N$.

Theorem (RUNDE, 2011)

Suppose that $VN(\Gamma)$ is injective (e.g. Γ amenable or connected). Then

$$\operatorname{CAP}(\widehat{\Gamma}) = \{ x \in \operatorname{VN}(\Gamma) \mid \Delta x \in \operatorname{VN}(\Gamma) \otimes_{\min} \operatorname{VN}(\Gamma) \}$$

In particular, since Δ is a unital *-homomorphism, $CAP(\widehat{\Gamma})$ is a unital C^* -subalgebra of $VN(\Gamma)$.

Lemma

Let V, W be operator spaces, let $f \in CB(V, W)$, and let $\iota : W \to N$ be a complete isometry where N is injective. Then

 $f: V \to W$ is g.c.c. $\iff \iota f: V \to N$ is g.c.c. $\iff \iota f \in V^* \otimes_{\min} N$

Lemma

Let V, W be operator spaces, let $f \in CB(V, W)$, and let $\iota : W \to N$ be a complete isometry where N is injective. Then

 $f: V \to W$ is g.c.c. $\iff \iota f: V \to N$ is g.c.c. $\iff \iota f \in V^* \otimes_{\min} N$

Theorem (C., in preparation)

$$\operatorname{CAP}(\widehat{\Gamma}) = \{ x \in \operatorname{VN}(\Gamma) \mid \Delta x \in \operatorname{VN}(\Gamma) \otimes_{\min} \mathcal{B}(\ell^2(\Gamma)) \}$$

In particular $\operatorname{CAP}(\widehat{\Gamma})$ is a unital C^* -subalgebra of $\operatorname{VN}(\Gamma)$.

Ongoing project

Revisit the results of CHOU (1990) using $CAP(\widehat{\Gamma})$ instead of $AP(\widehat{\Gamma})$.

For the rest of this talk we focus on the case where Γ is discrete. In this case we have $C_r^*(\Gamma) \equiv C_{\delta}^*(\Gamma) \subseteq CAP(\widehat{\Gamma})$ and the question is: do we always have equality?

For the rest of this talk we focus on the case where Γ is discrete. In this case we have $C_r^*(\Gamma) \equiv C_{\delta}^*(\Gamma) \subseteq CAP(\widehat{\Gamma})$ and the question is: do we always have equality?

We say $a \in \mathcal{B}(\ell^2(\Gamma))$ has finite bandwidth if there is a finite subset $F \subset \Gamma$ such that $a_{s,t} \neq 0 \implies st^{-1} \in F$. The norm-closure of the set of finite-bandwidth operators is denoted by $\mathrm{UC}_r^*(\Gamma)$.

Lemma

Let \diamond denote the Schur product of operators on $\ell^2(\Gamma)$. If $a \in VN(\Gamma)$ and $b \in \mathcal{B}(\ell^2(\Gamma))$ then $a \diamond b \in UC_r^*(\Gamma)$.

$$CAP(\widehat{\Gamma}) = \{ x \in VN(\Gamma) \mid \Delta x \in VN(\Gamma) \otimes_{\min} \mathcal{B}(\ell^2(\Gamma)) \}.$$

Using the description of Δ in terms of the fundamental unitary for $VN(\Gamma)$, we can construct $\nabla : \mathcal{B}(\ell^2(\Gamma \times \Gamma)) \to \mathcal{B}(\Gamma)$ such that

•
$$\nabla \Delta(x) = x$$
 for all $x \in VN(\Gamma)$;

•
$$\nabla(a \otimes b) = a \diamond b$$
 for all $a, b \in \mathcal{B}(\ell^2(\Gamma))$.

Using the description of Δ in terms of the fundamental unitary for $VN(\Gamma)$, we can construct $\nabla : \mathcal{B}(\ell^2(\Gamma \times \Gamma)) \to \mathcal{B}(\Gamma)$ such that

•
$$\nabla \Delta(x) = x$$
 for all $x \in VN(\Gamma)$;

•
$$\nabla(a \otimes b) = a \diamond b$$
 for all $a, b \in \mathcal{B}(\ell^2(\Gamma))$.

Theorem (C.) Let $x \in \mathcal{B}(\ell^2(\Gamma))$. TFAE: • $x \in CAP(\widehat{\Gamma})$ • $x \in VN(\Gamma) \cap UC_r^*(\Gamma)$

• $x \in VN(\Gamma)$ and $\Delta x \in C_r^*(\Gamma) \otimes_{\min} UC_r^*(\Gamma)$.

Discrete groups for which $C_r^*(\Gamma) = VN(\Gamma) \cap UC_r^*(\Gamma)$ are said to have the invariant translation approximation property (ITAP).

No examples are known to fail ITAP; the case of $SL_3(\mathbb{Z})$ remains open!

Discrete groups for which $C_r^*(\Gamma) = VN(\Gamma) \cap UC_r^*(\Gamma)$ are said to have the invariant translation approximation property (ITAP).

No examples are known to fail ITAP; the case of $SL_3(\mathbb{Z})$ remains open!

Every discrete group with the approximation property has the ITAP (ZACHARIAS, 2006). Hence if Γ is such a group, we have $\operatorname{CAP}(\widehat{\Gamma}) = \operatorname{C}^*_r(\Gamma)$. This includes: free groups; $\mathbb{Z}^2 \rtimes \operatorname{SL}_2(\mathbb{Z})$.

On the other hand: if Γ does not have ITAP, then $C_r^*(\Gamma) \subsetneq CAP(\widehat{\Gamma})$ and therefore $C_r^*(\Gamma) \subsetneq AP(\widehat{\Gamma})$.