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THE GROUP VON NEUMANN ALGEBRA

Let T" be a locally compact group. For s € T', define the left translation
operator \s : L2(T') — L2(T') by \&(t) = £(s71¢).

The group von Neumann algebra VN(T') is the SOT-closed algebra
generated by {\; | s € T'} inside B(L*(T)).



THE GROUP VON NEUMANN ALGEBRA

Let T" be a locally compact group. For s € T', define the left translation
operator \s : L2(T') — L2(T') by \&(t) = £(s71¢).

The group von Neumann algebra VN(T') is the SOT-closed algebra
generated by {\; | s € T'} inside B(L*(T)).

The group von Neumann algebra as a commutant

Let a € B(L?(T")) where T is unimodular (e.g. compact, abelian or
discrete). Then a € VN(T') iff it commutes with every right translation
operator on L2(T).

Example 1. VN(Z) is the set of all a € B(¢?(Z)) satisfying

QAij = Qitk,j+k for all i,j7k‘ e 7.
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THE PREDUAL

For ¢ € VN(I'). let evg(s) = ¢(As). Then evy € Co(I).

Since ¢ — evy is linear and injective we can identify VN(I'),. with a
linear subspace of Cy(T'); this is the Fourier algebra A(T).



THE PREDUAL

For ¢ € VN(I'). let evg(s) = ¢(As). Then evy € Co(I).

Since ¢ — evy is linear and injective we can identify VN(I'),. with a
linear subspace of Cy(T'); this is the Fourier algebra A(T").

The LCA case

If T" is loc. compact abelian, with dual group G = T, then the Fourier
transform L?(I") = L?(G) induces isomorphisms VN(T') 2 L*>°(G) and
A) = LY(G).

Convolution in L'(G) corresponds to pointwise multiplication in A(T")
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THE ACTION OF THE PREDUAL

For general I': A(T) is still an algebra with respect to pointwise
multiplication; thus it acts on VN(T') = A(T")*, via:

(xoevy, ev¢>VN(F)_A(F) = (x,evy - evw>VN(F)_A(F)

or, by slight abuse of notation, (x @ ¢, ) = (x, ¢ - V).



THE ACTION OF THE PREDUAL

For general I': A(T) is still an algebra with respect to pointwise
multiplication; thus it acts on VN(T') = A(T")*, via:

(xoevy, ev¢>VN(F)_A(F) = (x,evy - evw>VN(F)_A(F)
or, by slight abuse of notation, (x @ ¢, ) = (x, ¢ - V).

Example 2. If a € VN(Z) and ¢ € A(Z) then (a e ¢);; = a;;é(i — j).

Remark

If T is discrete and we view elements of VN(T") as infinite matrices, then
A(T") acts on VN(T") by (a version of) Schur multiplication.

3/16



ALMOST PERIODIC ELEMENTS

Since VN(T'), is an algebra acting on VN(T'), for each € VN(T') we
get an orbit map for this action:

L,: VN(I), > VNT) , ¢r>zed
Definition (DUNKL-RAMIREZ (1973))
AP(T) := {z € VN(T') | L, : VN(I'), — VN(I') is compact}

This space has been studied by various authors (GRANIRER, 1974; LAU,
1977; CroU, 1990) in the context of abstract harmonic analysis. But
where does it come from?



© Motivation from abstract harmonic analysis
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MOTIVATION: THE “CLASSICAL” SETTING

Let G be a group and let f € £°°(G). We say that f is almost periodic if
the set of left translates of f is a totally bounded subset of £>°(G).

Example 3. For any aq,...,a, € R and any ¢y, ...,¢, € C, the

function
f@) =cre®? .. 4 cpetont

is almost periodic on R.



MOTIVATION: THE “CLASSICAL” SETTING

Let G be a group and let f € £°°(G). We say that f is almost periodic if
the set of left translates of f is a totally bounded subset of £>°(G).

Example 3. For any aq,...,a, € R and any ¢y, ...,¢, € C, the
function
f@) =cre®? .. 4 cpetont

is almost periodic on R.
When G is locally compact, the a.p. elements of L>°(G) admit a simple
operator-theoretic characterization.

Recall: L'(G) is an algebra (with convolution as the product); so it has a
natural right action on L1(G)* = L*(G), which we denote by .
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Theorem (various sources, 1930s-1970s)
Let f € L®(G). TFAE:
Q f is (equal a.e. to) a bounded a.p. function;

Q f<€Cy(G) and {f e uu| u € Prob(G)} is totally bounded:;

Q Ls: LYG)— L™(G), pr f ey, is a compact operator.



Theorem (various sources, 1930s-1970s)
Let f € L®(G). TFAE:
Q f is (equal a.e. to) a bounded a.p. function;
Q f<€Cy(G) and {f e i | u € Prob(G)} is totally bounded;

Q Ls: LYG)— L™(G), pr f ey, is a compact operator.

The proof uses the existence of a b.a.i. in L!(G) and various topologies
on L>®(G) and M(G). The full details are rather technical.

One part is easy: if Ly : L*(G) — L>(G)) is compact, then f € Cy(G).

Idea of the proof

Take a b.a.i. (11;) in L*(G); then f o u; € Cy(G) and f = w*lim; f o p;.

But some subnet of (f e u;) converges in norm.
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RETURNING TO THE DUAL VERSION

A reminder of the D—R definition

AP(T) := {z € VN(T') | L, : VN(T'), — VN(I') is compact}
If T is abelian this is the space of continuous a.p. functions on L.
Note that if x = Ag then L,(¢) = ¢(x)x. Hence

Cy(T) :=Tin{A, | s € T} C AP(I)



RETURNING TO THE DUAL VERSION

A reminder of the D—R definition
AP(T) := {z € VN(T') | L, : VN(T'), — VN(I') is compact}

If T is abelian this is the space of continuous a.p. functions on L.

Note that if x = Ag then L,(¢) = ¢(x)x. Hence

Cy(T) :=Tin{A, | s € T} C AP(I)

When T is discrete C5(I') = C;(I'). GRANIRER (1974) observed that if
" is discrete and amenable, then AP(f) =Cr(T).

Idea of the proof
Take a b.a.i. (¢;) in A(T); then z @ ¢; € C:(T') and x = w*lim; x ® ¢;.
But some subnet of (x e ¢;) converges in norm.



PROPERTIES AND PROBLEMS

One serious problem is the following gap in our knowledge:
Question.

Is AP(T') is a C*-subalgebra of VN(T")?

No counterexamples are known, but the question is open even for I' = FFy
or I' =SU(2)!
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PROPERTIES AND PROBLEMS

One serious problem is the following gap in our knowledge:

Question.

Is AP(T') is a C*-subalgebra of VN(T")?

No counterexamples are known, but the question is open even for I' = FFy
or I' = SU(2)! The best result to date is:

Theorem (CHOU, 1990)

Let I be amenable and have an open abelian subgroup. Then
AP(T) = C5(I'); in particular it is a C*-algebra.

By results of CHOU (1990) and RINDLER (1992) there are compact
(profinite) groups I' such that the inclusion C3(I") C AP(T) is proper.



© Introducing operator space structure
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COMPACTNESS FOR MAPS BETWEEN OPERATOR SPACES

Definition (OIKHBERG, PhD thesis, 1998)
Given operator spaces V and W and f € CB(V,W), we say f is Gelfand
completely compact (g.c.c.) if:
for all e > O there exists a closed subspace E C V with dim(V/E) < oo,
such that

|E—=V—=>W|,<e.



COMPACTNESS FOR MAPS BETWEEN OPERATOR SPACES

Definition (OIKHBERG, PhD thesis, 1998)

Given operator spaces V and W and f € CB(V,W), we say f is Gelfand
completely compact (g.c.c.) if:
for all e > O there exists a closed subspace E C V with dim(V/E) < oo,
such that

|E—=V—=>W|,<e.

If we replace the cb-norm with the “usual norm” of B(V, W) we recover
the usual class of compact operators. In particular:

@ every g.c.c. map V' — W is compact in the usual sense;

o if W = L*°(G) then every compact map V' — W is g.c.c.
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COMPLETELY ALMOST PERIODIC ELEMENTS

Definition (Reformulation of RUNDE, 2011)
CAP(T) := {z € VN(I) | L, : VN(I'),, — VN(I) is g.c.c.}

Remarks for the specialists

O RUNDE (2011) gives a definition that works for all Hopf—von
Neumann algebras (M, A); when applied to (L>(G), A) it recovers
the classical space AP(G).

© Our formulation is cheating slightly by exploiting the fact that
(VN(T'), A) is co-commutative; for general (M, A) we need to add a
corresponding condition on R, : M, — M.

© Runde’s original definition used a different version of operator-space
compactness, called (Saar) complete compactness.
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DESCRIBING THE ACTION USING COMULTIPLICATION

There is a normal, unital *-homomorphism A : VN(T') — VN(I" x T")
satisfying
Adg =X ® Ag (sel)



DESCRIBING THE ACTION USING COMULTIPLICATION

There is a normal, unital *-homomorphism A : VN(T') — VN(I" x T")
satisfying
Adg =X ® Ag (sel)

The product on VN(T'),, = A(T") can be recovered via:
(@-¥)(z) = (@@P)Ar  (¢,¢ € VN(I). ;2 € VN(I))
Hence the orbit map L, : VN(I').. — VN(T') is given by:

Ly(¢) =z ed=(p®1)Ax



A LA RECHERCHE D’UNE C*-ALGEBRE

For von Neumann algebras M and N we have CB(M,,N) = M®N:

w € M®N corresponds to ¢ — (¢ ® ¢)(w)

Moreover: if N is injective, the g.c.c. maps correspond to M @i, N.



A LA RECHERCHE D’UNE C*-ALGEBRE

For von Neumann algebras M and N we have CB(M,,N) = M®N:
w € M®N corresponds to ¢ — (¢ ® ¢)(w)

Moreover: if N is injective, the g.c.c. maps correspond to M @i, N.

Theorem (RUNDE, 2011)
Suppose that VN(T') is injective (e.g. I' amenable or connected). Then

CAP(T) = {z € VN(TI') | Az € VN(I') ®min VN(I)}

In particular, since A is a unital x-homomorphism, CAP(IA“) is a unital
C*-subalgebra of VN(T').



REMOVING THE INJECTIVITY ASSUMPTION

Lemma
Let V,W be operator spaces, let f € CB(V,W), and let . : W — N be a
complete isometry where N is injective. Then

f:V—o>Wisgcc. < 1f:V > Nisgcc. < 1f €V* Qumin N



REMOVING THE INJECTIVITY ASSUMPTION

Lemma
Let V,W be operator spaces, let f € CB(V,W), and let . : W — N be a
complete isometry where N is injective. Then

f:V—o>Wisgcc. < 1f:V > Nisgcc. < 1f €V* Qumin N
Theorem (C., in preparation)

CAP(T) = {z € VN(I) | Az € VN(I') @min B(2(I))}
In particular CAP(T) is a unital C*-subalgebra of VN(I).

Ongoing project
Revisit the results of CHOU (1990) using CAP(T') instead of AP(T).



© The discrete case
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RESULTS FOR DISCRETE GROUPS

For the rest of this talk we focus on the case where T is discrete. In this
case we have C*(I') = C5(I') € CAP(T") and the question is: do we
always have equality?



RESULTS FOR DISCRETE GROUPS

For the rest of this talk we focus on the case where T is discrete. In this
case we have C*(I') = C5(I') € CAP(T") and the question is: do we
always have equality?

We say a € B(¢%(T)) has finite bandwidth if there is a finite subset
F C T such that asy # 0 = st~! € F. The norm-closure of the set of
finite-bandwidth operators is denoted by UC(T).

Lemma
Let o denote the Schur product of operators on (*(T'). If a € VN(T') and
b€ B(?(T")) thenaob e UCK(T).

CAP(T) = {z € VN(I) | Az € VN(I') ®min B2(T))}.
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Using the description of A in terms of the fundamental unitary for
VN(T'), we can construct V : B(£2(I' x I')) — B(T') such that

o VA(z) =z for all z € VN(T');
@ V(a®b)=aob forall a,b € B({*(T)).
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Using the description of A in terms of the fundamental unitary for
VN(T'), we can construct V : B(£2(I' x I')) — B(T') such that

o VA(z) =z for all z € VN(T');
o V(a®b)=aobforall a,b € B({*(I)).

Theorem (C.)
Let z € B(¢*(T")). TFAE:
Q z € CAP(D)
Q z € VN(I')NnUC(T)
Q z € VN(I') and Az € C(T) ®min UCK(T).



Discrete groups for which C;:(I') = VN(I') N UC}(T") are said to have the
invariant translation approximation property (ITAP).

No examples are known to fail ITAP; the case of SL3(Z) remains open!
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Discrete groups for which C;:(I') = VN(I') N UC}(T") are said to have the
invariant translation approximation property (ITAP).

No examples are known to fail ITAP; the case of SL3(Z) remains open!

Every discrete group with the approximation property has the ITAP
(ZACHARIAS, 2006). Hence if T' is such a group, we have
CAP(T) = C*(T"). This includes: free groups; Z2 x SLy(Z).

On the other hand: if T does not have ITAP, then C(T") C CAP(T) and
therefore C*(I') C AP(I).
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