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Groupoids and examples

Let G be a locally compact Hausdorff groupoid, i.e. we have a partially
defined continuous multiplication map

GxG626® =6
and a continuous inverse map
TG s ©

satisfying the usual axioms (whenever they make sense).

Let s,r: G — G denote the source and range maps s(g) = g ‘g and
r(g) = gg ! Let G°:=r(G) = s(G) denote the set of units.

We will assume that G is ample, which means that the range map
r: G — G is a local homeomorphism (i.e. G is étale) and G° is totally
disconnected.
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e An action of a discrete group ' ~ X on a totally disconnected space
X gives rise to the transformation groupoid I x X.

e Given a discrete metric space X with bounded geometry, one can
build an ample groupoid G(X) encoding the coarse geometry of X.

e Putnam associates an ample groupoid G“(X, ) to an irreducible
Smale space (X, @) with totally disconnected stable sets.

G is called principal if all of its isotropy groups are trivial, i.e. for all
x € G° we have

Gy :={g € G|s(g) =r(g)=x}={x}.

I x X is principal iff T ~ X is free. The other two examples are always
principal.
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Dynamic asymptotic dimension

Definition (Guentner, Willett, Yu '17)
Let G be an ample groupoid with G® compact. We say that G has

dynamic asymptotic dimension at most d (and write dad(G) < d) if
for any compact open subset G® C K C G there is a clopen cover
Uo, ..., Uy C G° of G%such that for each i the set

{g €K |s(g) r(g) € U}

generates a compact open subgroupoid of G.

Dimension 0
The groupoids with dimension zero are just those which can be written

as an increasing union of compact open subgroupoids (AF groupoids).
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Examples and applications

Examples
1. (GWY) For Z ~ X minimal action on Cantor set dad(Z ~ X) = 1.
2. (GWY) For a bounded geometry metric space (X, d),
dad(G(X)) = asdim(X).
3. (Deeley&Strung) For an irreducible Smale space X with totally
disconnected stable sets dad(GY(X, ¢)) < dim(X).

Theorem (GWY '17)
Let G be a principal ample groupoid. Then

dimpue(C*(G)) < dad(G)
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Groupoid homology

Crainic & Moerdijk introduced a homology theory for étale groupoids
generalizing group homology. For constant Z coefficients the construction
can be done in an elementary way as follows: We have canonical maps

di: G — g1

(g27"'7gn) /:0
di(gl,---7gn): (gla"'7g/'gi+l7--~7gn) 1§l§n_1
(glw-'vgnfl) i=n
Each d; induces a map (d;). : C.(G(",Z) — C.(G"~1),Z) by
(di)*(f)(glv'“vgnfl) = Z f(h17...7hn)

If we let

we obtain a chain complex

o C(6P,2) B ¢ (6W,Z) B € (G°Z) - 0



Groupoid homology and Matui's HK conjecture

The groupoid homology is now just the homology of this chain complex:

Hn(G) := ker(0,)/im(dp11)



Groupoid homology and Matui's HK conjecture

The groupoid homology is now just the homology of this chain complex:
Hn(G) := ker(0,)/im(dp11)

HK conjecture (Matui)
Let G be an essentially principal, minimal ample groupoid, then

G)) = P Han(G) and Ki(C EB Hant1(G
n=0



Groupoid homology and Matui's HK conjecture

The groupoid homology is now just the homology of this chain complex:
Hn(G) := ker(0,)/im(dp11)

HK conjecture (Matui)
Let G be an essentially principal, minimal ample groupoid, then

G)) = P Han(G) and Ki(C EB Hant1(G
n=0

e The conjecture in this form has been disproved by Scarparo.

e Yet, it remains an interesting question which groupoids G DO
satisfy the conclusion of the conjecture.
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Main results

Theorem
Let G be a principal, o-compact, ample groupoid with compact unit

space and dynamic asymptotic dimension at most d. Then

H,(G) =0 for all n > d, and Hy4(G) is free abelian.

Combining this with a spectral sequence result
Ho(G. Ko(C(G?))) = Kpiq(CF(G))

recently developed by Proietti-Yamashita (more about that later in
Makoto's talk!) we obtain

Corollary (Matui's conjecture up to dimension 2)
Let G be a o-compact, principal ample groupoid with compact unit space

and dad(G) < 2, then

Ko(C7(G)) = Ho(G) @ Ha(G), and Ki(C/(G)) = Hi(G)
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Mapping homology to K-theory

A clopen subset A C G° gives rise to a projection 14 € C(G%) C C/(G).
This gives rise to a canonical homomorphism

po - Ho(G) = Ko(C(G))

Already in degree 1 the situation is much less obvious.

Theorem
For any ample groupoid G, there is a canonical map

M1 Hl(G) — Kl(Cr*(G))

e H;(G) is generated by classes of the form [1y] where V C G is a
compact open bisection. 1y, can be viewed as a partial isometry in
Cr(G).

e Partial isometries like this live in a relative Ky group
Ko(C(G®) C C/(G)), so get a canonical map
Hi(G) — Ko(C(G°) € C}(G))

e Factors through the desired map
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Further results

Theorem
Let G be a principal ample groupoid. If dad(G) < 1 then g is an

isomorphism and i is surjective.

This concrete isomorphism allows us to completely determine the Elliott
invariant of C(G)!

We also observe the following negative result:

Theorem
There exists a principal ample groupoid G with H,(G) =0 for all n > 2

such that pg is not an isomorphism.

The examples are groupoids with topological property (T), which also
provide counter-examples to the Baum-Connes conjecture!



