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Groupoids and examples

Let G be a locally compact Hausdorff groupoid, i.e. we have a partially

defined continuous multiplication map

G × G ⊇ G (2) → G

and a continuous inverse map

·−1 : G → G

satisfying the usual axioms (whenever they make sense).

Let s, r : G → G denote the source and range maps s(g) = g−1g and

r(g) = gg−1. Let G 0 := r(G ) = s(G ) denote the set of units.

We will assume that G is ample, which means that the range map

r : G → G is a local homeomorphism (i.e. G is étale) and G 0 is totally

disconnected.
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Examples

• An action of a discrete group Γ y X on a totally disconnected space

X gives rise to the transformation groupoid Γ n X .

• Given a discrete metric space X with bounded geometry, one can

build an ample groupoid G (X ) encoding the coarse geometry of X .

• Putnam associates an ample groupoid G u(X , ϕ) to an irreducible

Smale space (X , ϕ) with totally disconnected stable sets.

G is called principal if all of its isotropy groups are trivial, i.e. for all

x ∈ G 0 we have

G x
x := {g ∈ G | s(g) = r(g) = x} = {x}.

Γ n X is principal iff Γ y X is free. The other two examples are always

principal.
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Dynamic asymptotic dimension

Definition (Guentner, Willett, Yu ’17)
Let G be an ample groupoid with G 0 compact. We say that G has

dynamic asymptotic dimension at most d (and write dad(G) ≤ d) if

for any compact open subset G 0 ⊆ K ⊆ G ,

there is a clopen cover

U0, . . . ,Ud ⊆ G 0 of G 0,such that for each i the set

{g ∈ K | s(g), r(g) ∈ Ui}

generates a compact open subgroupoid of G .

Dimension 0
The groupoids with dimension zero are just those which can be written

as an increasing union of compact open subgroupoids (AF groupoids).
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Examples and applications

Examples

1. (GWY) For Z y X minimal action on Cantor set dad(Z y X ) = 1.

2. (GWY) For a bounded geometry metric space (X , d),

dad(G (X )) = asdim(X ).

3. (Deeley&Strung) For an irreducible Smale space X with totally

disconnected stable sets dad(G u(X , ϕ)) ≤ dim(X ).

Theorem (GWY ’17)
Let G be a principal ample groupoid. Then

dimnuc(C∗r (G )) ≤ dad(G )
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Groupoid homology

Crainic & Moerdijk introduced a homology theory for étale groupoids

generalizing group homology. For constant Z coefficients the construction

can be done in an elementary way as follows: We have canonical maps

di : G (n) → G (n−1)

di (g1, . . . , gn) =


(g2, . . . , gn) i = 0

(g1, . . . , gigi+1, . . . , gn) 1 ≤ i ≤ n − 1

(g1, . . . , gn−1) i = n

Each di induces a map (di )∗ : Cc(G (n),Z)→ Cc(G (n−1),Z) by

(di )∗(f )(g1, . . . , gn−1) =
∑

di (h1,...,hn)=(g1,...,gn−1)

f (h1, . . . , hn)

If we let

δn =
n∑

i=0

(−1)i (di )∗

we obtain a chain complex

· · · → Cc(G (2),Z)
δ2→ Cc(G (1),Z)

δ1→ Cc(G 0,Z)→ 0
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Groupoid homology and Matui’s HK conjecture

The groupoid homology is now just the homology of this chain complex:

Hn(G ) := ker(δn)/im(δn+1)

HK conjecture (Matui)
Let G be an essentially principal, minimal ample groupoid, then

K0(C∗r (G )) ∼=
∞⊕
n=0

H2n(G ) and K1(C∗r (G )) ∼=
∞⊕
n=0

H2n+1(G )

• The conjecture in this form has been disproved by Scarparo.

• Yet, it remains an interesting question which groupoids G DO

satisfy the conclusion of the conjecture.
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Main results

Theorem
Let G be a principal, σ-compact, ample groupoid with compact unit

space and dynamic asymptotic dimension at most d . Then

Hn(G ) = 0 for all n > d , and Hd(G ) is free abelian.

Combining this with a spectral sequence result

Hp(G ,Kq(C (G 0)))⇒ Kp+q(C∗r (G ))

recently developed by Proietti-Yamashita (more about that later in

Makoto’s talk!) we obtain

Corollary (Matui’s conjecture up to dimension 2)
Let G be a σ-compact, principal ample groupoid with compact unit space

and dad(G ) ≤ 2, then

K0(C∗r (G )) ∼= H0(G )⊕ H2(G ), and K1(C∗r (G )) ∼= H1(G )
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Mapping homology to K-theory

A clopen subset A ⊆ G 0 gives rise to a projection 1A ∈ C (G 0) ⊆ C∗r (G ).

This gives rise to a canonical homomorphism

µ0 : H0(G )→ K0(C∗r (G ))

Already in degree 1 the situation is much less obvious.

Theorem
For any ample groupoid G , there is a canonical map

µ1 : H1(G )→ K1(C∗r (G ))

• H1(G ) is generated by classes of the form [1V ] where V ⊆ G is a

compact open bisection. 1V can be viewed as a partial isometry in

C∗r (G ).

• Partial isometries like this live in a relative K0 group

K0(C (G 0) ⊆ C∗r (G )), so get a canonical map

H1(G )→ K0(C (G 0) ⊆ C∗r (G ))

• Factors through the desired map
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Further results

Theorem
Let G be a principal ample groupoid. If dad(G ) ≤ 1 then µ0 is an

isomorphism and µ1 is surjective.

This concrete isomorphism allows us to completely determine the Elliott

invariant of C∗r (G )!

We also observe the following negative result:

Theorem
There exists a principal ample groupoid G with Hn(G ) = 0 for all n ≥ 2

such that µ0 is not an isomorphism.

The examples are groupoids with topological property (T), which also

provide counter-examples to the Baum-Connes conjecture!
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